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Abstract

Automated visual-tracking of cell population in vitro us-
ing phase-contrast time-lapse microscopy is vital for the
quantitative and systematic study of cell behaviors, includ-
ing spatiotemporal quantification of migration, prolifera-
tion, and apoptosis. The low image quality, high and
varying density of the cell culture, and the complexity of
cell behaviors pose many challenges to existing tracking
techniques. This paper presents a fully-automated multi-
target tracking system that can simultaneously track hun-
dreds of cells and efficiently cope with these challenges.
The approach exploits a fast topology-constrained level-set
method in conjunction with a stochastic motion filter, with
a careful formulation that makes it suitable for real-time
tracking during acquisition. Our methodology was applied
to human tissue cell tracking in vitro under various imaging
conditions and yielded a 88.4% tracking accuracy.

1. Introduction
Biological discovery is advancing toward the use of com-

binatorial, high-throughput experimental approaches for ap-
plications in genomics, proteomics, drug development, tis-
sue engineering and stem cell research. Computer-aided
bioprinting [22, 2, 13] is one such approach, which can pro-
grammatically create complex patterned arrays of extracel-
lular components, including hormones (e.g. growth factors)
and extracellular matrix molecules, for inducing and direct-
ing cell fates. Cells can respond to these printed patterns in
multiple ways including: migration (translocation), prolif-
eration (through a division mechanism called mitosis), dif-
ferentiation (by which cells acquire more specialized func-
tions), quiescence (inactivity) and apoptosis (death). The
study of how the patterns regulate migration, proliferation,
and apoptosis requires the use of non-fluorescent phase-

Figure 1. Phase-contrast microscopy images of cell populations

contrast microscopy to record the cellular responses over an
extended period of time (5-10 days), which routinely pro-
duces extremely large datasets with low signal-to-noise ra-
tios (Figure 1). Typical experiments produce over 100 giga-
bytes (GB) of image data consisting of about 40000 frames,
with up to thousands of cells in each frame. This makes au-
tomated tracking and analysis of cells critical in efficiently
studying the underlying biological mechanisms. However,
the high processing demand, the varying density of the cell
culture (with cells dividing/dying, leaving/reentering the
field-of-view), and the complexity of the cellular topologies
(shape deformation, close contact, and partial overlap) pose
many challenges to existing tracking techniques.

In this paper, we present a multi-target tracking sys-
tem that can simultaneously track hundreds to thousands of
cells, and can successfully cope with the aforementioned
challenges. The system exploits a two-level design. The
lower level consists of several modules including: a cell de-
tector, a fast topology-constrained level-set cell tracker, and
a stochastic motion filter (e.g. Kalman filter [9]). The higher
level comprises a reasoning unit called a track arbitrator,
which fuses and coordinates the outputs of the lower-level
components. The efficiency and causal formulation of the
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method makes it suitable for high-throughput online pro-
cessing for tracking during image acquisition.

1.1. Previous Work on Object Tracking

The high processing demand for extended-time studies
of large cell populations rules out the use of manual or
computer-aided interactive tracking. Fully-automated tech-
niques are required. Methods for automated object tracking
mainly involve two different approaches: tracking by detec-
tion and tracking by model-evolution.

The first approach performs object detection and inter-
frame data association in two independent stages. This
approach is effective when the objects are well-separated,
but faces ambiguousness if the objects undergo close con-
tact, and when the detector produces split/merged measure-
ments. Recently, Khan et al tackled the problem of object
contact [11] by incorporating a Markov random field prior
distribution into the particle filter [6] framework, for mod-
eling object interactions and maintaining object identities.
The same authors addressed the issue of split/merged mea-
surements [12], but under the assumption that the number
of objects is fixed, which is violated in our problem. Fur-
thermore, neither work has considered the scenario where
the object can divide and replicate itself.

The second approach involves the creation of mathemat-
ical models, either appearance or shape models, which are
fitted to the objects and are evolved over time to follow the
object movements. This category encompasses a large spec-
trum of techniques with varied capabilities. The parametric
active contours (e.g, snakes [10]) and mean-shift [4] models
have been explored in the past for tracking multiple migrat-
ing cells under phase-contrast microscopy [24, 5].

The classic snake model has two major drawbacks for
cell tracking. One is its inability to handle topology changes
of the contour, which is crucial for modeling cell division.
The other is its catastrophic behavior when the cells are in
close contact, where the contour associated with one cell
may easily be attracted to a neighboring cell. Zimmer et al
[24, 25] extended the snake model using the ideas of adding
repulsive forces between snakes to handle close contact of
cells, and incorporating “topological operators” to handle
cell division. Both extensions, however, significantly in-
creased the computational overhead, making the method
prohibitively expensive for tracking a large number of cells.

Debeir et al [5] considered a somewhat simplified prob-
lem of tracking only the centroid positions, but not the
boundaries, of the cells, which permits a mean-shift-based
model [4] to be used. However, similar to the snakes, this
model cannot handle cell division. As a remedy, the authors
proposed to track backwards (from the last frame to the
first), which simplified the problem but made the tracking
noncausal and unsuitable for online processing. Moreover,
this tracker requires manual initialization, and cannot auto-

matically incorporate new cells entering the field of view.
Interestingly, cell tracking using the level-set method-

ology [15], which is increasingly deemed a more pow-
erful framework for image analysis than its parametric
counterparts, has been dismissed in several previous re-
ports [24, 25, 5, 1]. One criticism has been against the
topological flexibility (i.e., the freedom to merge and break)
of level-set represented object boundaries. This flexibil-
ity, while permitting efficient modeling of cell division,
does not prevent two contacting boundaries from merging.
Cell fusion, however, is impossible in most biological con-
texts, including ours. In fact, previous studies on level-set
cell-tracking either did not consider contacting cells [14],
or resorted to off-line post-processing to correct cell fu-
sions [23]. Another criticism of the level-set method is its
high computational expenses. However, as we will demon-
strate, both disadvantages can be overcome by taking ad-
vantage of recent developments on level-set methods, in-
cluding topology control and fast implementations. Indeed,
the potential of the level-set model for tracking has yet
to be fully realized. While the topology control of level
sets has been studied more extensively for image segmenta-
tion [7, 19], its potential for tracking is under-explored.

2. Methods

Our tracking system consists of four major components:
1) Cell detector, which detects and labels candidate cell re-
gions in the input image based upon adaptive segmenta-
tion; 2) Model tracker, which, by exploiting a novel fast
topology-constrained level-set formulation, tracks cell re-
gions across frames following the image cues and the mo-
tion predictions; 3) Motion filter, which provides tempo-
ral contexts to the cell tracker and track arbitrator; and 4)
Track arbitrator, which manages the whole tracking task
by adding newly-entered cells to the record, removing de-
parted/dead cells, re-labeling divided cells, and recovering
lost tracks, by fusing the outputs from the first three mod-
ules using high-level reasoning based on what is and what
is not physically possible. All components work collabora-
tively to produce the final spatiotemporal history of cell tra-
jectories, including centroid positions, boundaries, migra-
tion velocities, mean intensities, and parent-daughter link-
age for all cells in an experiment.

2.1. Cell Detection

Cells in phase-contrast images normally appear as dark
regions surrounded by brighter halo artifacts, except for mi-
totic (dividing) or apoptotic (dying) cells, which are smaller,
rounder and have very bright appearances.

The cell detector works by classifying the image pixels
into cell (C) and background (B) classes. The output is a bi-
nary map of cell regions, denoted ζk, where k = 1, . . . ,K
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is the frame index. Each connected foreground component
in ζk is considered as a cell candidate in frame k. The clas-
sification is based on the maximum a posteriori principle:

cMAP (x) = arg max
c

p(c|I(x)) = arg max
c

p(I(x)|c)p(c),

where c ∈ {C,B} denotes the pixel class, x = (x, y) is
the pixel location, and I(x) is the pixel intensity. Given
the (normalized) cell histogram (hC) and background his-
togram (hB) (as derived below), the classifier can be imple-
mented as:

cMAP (x) =
{
C, hC(I(x)) ≥ hB(I(x)),
B, otherwise.

The mitotic/apoptotic cells and the non-mitotic non-
apoptotic cells are detected separately using two sets of his-
tograms. The appearances of the mitotic/apoptotic cells are
usually very distinctive. Their histograms are constructed
by off-line learning utilizing a small amount of training
data. On the other hand, the histograms for the non-mitotic
non-apoptotic cells exhibit more fluctuations across differ-
ent frames or datasets. Therefore, starting from the pre-
trained histograms h0

C and h0
B , the histograms are updated

for each frame using the following auto-regression:

hk
c = (1− α)hk−1

c + αĥk
c , c ∈ {C,B}, 0 ≤ α ≤ 1.

The histograms ĥk
c are constructed based on a rough

segmentation of the cells in the current frame using back-
ground subtraction followed by Otsu thresholding [16]. Un-
der the assumption that the background is piecewise lin-
ear, the background is estimated using a “rolling-ball” al-
gorithm [21], which simulates rolling a certain-sized ball
over the image plane, filling in the potholes that matches
the ball size.

2.2. Level-Set Cell Tracker

Let Ω ⊂ R2 denote the image domain. The level-set
method represents any contour Γk ⊂ Ω as the zero level set
of a scalar function φk(x) : Ω → R (dubbed the level-set

Figure 2. System Overview

function), i.e., Γk = {x|φk(x) = 0}. For cell tracking, the
contour Γk consists of the cell boundaries in frame k.

Let Nk−1 be the set of cell labels that exist in frame
k − 1. We use Ω0 ⊂ Ω to denote the background, and
Ωn ⊂ Ω (n ∈ Nk−1) to denote the cell regions. Let
ΩC =

⋃
n∈Nk−1 Ωn. The level set function for frame k

is initialized to satisfy:

φk(x) =

 < 0, if x ∈ ΩC ,
= 0, if x ∈ Γk−1,
> 0, if x ∈ Ω0.

To keep track of the labeled cell regions, another auxiliary
region labeling function ψk is evolved simultaneously with
φk, which is initialized by

ψk(x) = n, if x ∈ Ωn, (n ∈ {0} ∪Nk−1).

ψk is also the output of the level-set tracker, which will
carry labels of the propagated cell regions for frame k.

Intuitively, the placement of each cell boundary should
not only match the cell appearance in the current frame, but
also be a consequence of a “conceivable” movement follow-
ing the cell motion pattern. Mathematically, φk is evolved
to minimize an energy functional that is the weighted com-
bination of three terms that are derived from: 1) the pixel
intensities (Eregion); 2) image gradient magnitudes (Eedge);
and 3) the cell motion predictions (Emotion):

E = Eregion + µEedge + νEmotion, (1)

with

Eregion =
∑

n∈{0}∪Nk−1

∫
Ωn

− log p(I(x)|Ωn)dx,

Eedge =
∑

n∈Nk−1

∫
Ωn

g(x)δ(φk(x))|∇φk(x)|dx,

Emotion =
∑

n∈Nk−1

∫
Ωn

(
υ − log p(I(x),x|ŝk|k−1

n )
)
dx.

Here, µ, ν and υ are real coefficients. δ(·) is the Dirac delta
function, and g(·) is an edge indicator function that takes
on small values near image edges. The probability function
p(I(x)|Ωn) is the pixel intensity distribution for each re-
gion, and p(I(x),x|ŝk|k−1

n ) is the probability that the pixel
x and its intensity match the prediction of the motion filter
(Section 2.3). Both distributions are assumed to be indepen-
dent at each pixel.

The effect of minimizing E is as follows. The region en-
ergy termEregion encourages the cell/background configura-
tion to match the image appearance. The edge energyEedge,
also known as the geodesic energy [3], draws the contour to
high gradient magnitude (i.e., edge) locations. Finally, the
motion term Emotion attracts the contour to the modes of the
predicted cell centroid distributions.
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2.2.1 Cell Merging Prevention by Topology Control

To prevent cell fusion, it is important to introduce topology
constraints that permit division but prohibit merging. To
achieve this, we borrow the concept of topological numbers
from digital topology [7]. Let N8(x) be the set of 8 neigh-
bors of pixel x. The topological number of x with respect
to ΩC , denoted TC(x), is the number of 4-connected com-
ponents in the set ΩC ∩ N8(x). Similarly, the topological
number of x with respect to the background Ω0, denoted
T0(x), is the number of 8-connected components in the set
Ω0∩N8(x). Let o(x) denote the number of cell regions that
overlap with N8(x). Then, the relaxed topological num-
ber [20] for pixel x is defined as:

Tr(x) = min
(
o(x),max(TC(x), T0(x))

)
.

The boundaries of two different cell regions Ωi,Ωj can
merge only if the level set function changes sign from pos-
itive to negative at a point x with Tr(x) > 1. By detecting
the points where Tr > 1, and preventing the level set func-
tion from changing sign at these points, we can effectively
prevent different cell regions from merging.

2.2.2 Implementation

Instead of minimizing (1) by numerically evaluating its
first variation, we adopt the subsecond-speed algorithm pro-
posed by Shi et al in [20]. This algorithm is limited to
pixel-level accuracies. However, this is deemed adequate
for our problem, since our primary goal is to track the tra-
jectories of cells over time, rather than to delineate the cell
boundaries at a subpixel accuracy. A pixel-level accuracy
is also sufficient for extracting all features required to assist
the tracking and analysis.

2.3. Stochastic Motion Filtering

A motion filter is the fundamental building block of
many tracking systems, which provides recursive estima-
tions of the target states (position, speed and/or number)
based on noisy measurements. Two of the best-known fil-
ters are the Kalman filter [9] and the particle filter [6].

In our case, the target state vector sk
n of the n-th cell in

frame k consists of the cell centroid position (xk
n, y

k
n), mi-

gration speed (ẋk
n, ẏ

k
n), and the mean pixel intensity, ikn, of

the cell region: sk
n = (ikn, x

k
n, y

k
n, ẋ

k
n, ẏ

k
n)T . The measure-

ment vector, denoted zk
n, consists of the computed centroid

and mean intensity of the set of pixels with label n in the
level-set tracker output ψk.

For each cell, we estimate its state sk
n based on the se-

quence of all available measurements up to time k. The
estimation is done in two stages: prediction and correction.
The former stage makes a prediction, ŝk|k−1

n , of the state
at time k based on the state history up to time k − 1; the

latter stage generates a refined estimate ŝk|k
n , by incorpo-

rating the newly-arrived measurement zk
n. Essential to any

motion filter are a motion model that describes the target
dynamics, and a measurement model that relates states to
measurements. Before probing further into the formulation
of these two models, we need some understanding of the
physical process behind cell motility.

2.3.1 Physical Process of Cell Motion

The mechanisms behind cellular motion are far from be-
ing fully understood. However, it is generally believed that
the migratory motion of a cell consists of two components:
a directed motion in response to the spatial variations of
the underlying physicochemical environment, and a random
motion due to the stochastic nature of the membrane adhe-
sions and cytoskeleton contraction events [18]. Moreover,
cell migration is found to occur by a sequence of events:
1) membrane extension; 2) formation of new adhesion sites
at the forward edge; 3) accumulation of tension in the cell;
and 4) release of adhesion sites at the trailing edge [18].
The membrane extension event is among the most visible
in images. It causes a migrating cell to appear elongated,
with its long axis in alignment with the migration direction,
a phenomenon referred to as cell polarization.

2.3.2 Computer Realization

Based on our current (limited) knowledge of cell motion,
we construct the motion model and measurement model un-
der a linear Gaussian assumption. We use a second-order
autoregressive process, where the states at a given time de-
pend on two previous time steps. Let Sk

n = (sk
n, s

k−1
n , sn)T ,

where sn is the mean state of cell n. We define:

Motion model: Sk
n = AnSk−1

n + Bnvk−1
n ,

Measurement model: zk
n = HSk

n + wk
n,

The matrices An, Bn and the mean state sn are initialized
using off-line estimated parameters, and updated online ev-
ery Ks (where Ks is a constant) frames by learning from
the tracking history of each cell in the previous Ks frames.
The learning methodology is adopted from [17]. The matrix
H equals (I3×3 03×7) with I being the identity matrix. The
vector vk−1

n is a zero-mean Gaussian variable with covari-
ance Q = I5×5; and the vector wk

n is a time-varying zero-
mean Gaussian white noise with covariance Rk

n, computed
as the covariance of the set {I(x),x|ψk(x) = n}, account-
ing for the cell polarization effect. This formulation allows
us to utilize the standard Kalman filter realization [9].

2.4. Track Arbitration

The track arbitrator fuses the outputs of the previous sub-
systems, to determine the final cell trajectories. The arbitra-
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tion procedure (Algorithm 1) is grounded on the fact that the
number of cells can change in successive frames only due to
four reasons: 1) mitosis; 2) apoptosis; 3) new cells entering
from the image border; or 4) cells leaving the image border.

The algorithm first searches for discrepancies between
the outputs of the cell detector and tracker, ζk and ψk

(Line 1). Any cell candidate in ζk that does not correspond
to a cell region in ψk is deemed to arise due to one of the
four reasons: 1) it is a new cell; 2) it is a daughter cell of one
of the existing cells, but is not properly tracked during mito-
sis; 3) it is a migrating cell that is not properly followed by
the tracker; or 4) noise. These cell candidates are added to
the set Ωnolabel for pending decisions. Then, cell labels are
sought that are not propagated from the previous to the cur-
rent frame (Line 2). This may happen if the corresponding
cell regions vanish during the level set evolution. This re-
flects three possibilities: 1) the cells died and were released
into the media; 2) the cells became invisible due to noise; or
3) the contour failed to follow the cells; All the lost labels
are added to the set Nlost for pending decisions.

Meanwhile, mitosis and apoptosis events are being de-
tected (Lines 3,4). Cells undergoing mitosis/apoptosis typ-
ically exhibit a series of morphological and appearance
changes [5, 23]. These include an initial decrease of cell
area, increase of circularity, and increase of intensity. For
mitosis, these are followed by a reverse process and the cell
eventually divides. For apoptosis, the reverse process will
not occur and the cell will shrink to a small lifeless bright
dot or disappear. The information is used to compute two
confidence scores. A mitotic or apoptotic event is detected
if the corresponding score exceeds a preset threshold.

Next, a pairing between the unlabeled cell candidates in
Ωnolabel and the lost labels in Nlost is attempted (Line 5).
The pairing is according to a cost function that considers
the distance and the intensity difference between the cell
candidate and the lost cells in their predicted states. We use
a bipartite graph matching algorithm [8] with robust outlier
handling to minimize this cost function and obtain a glob-
ally optimal pairing. Not all cell candidates will find their
matches and vice versa. This is either because the cell can-
didate is an outlier (due to noise), or because the lost cell is
dead or has left the field-of-view. These cases are handled
at the end of the arbitration process (Lines 6,8).

Whenever the track arbitrator makes a decision, it per-
forms one of the following operations on the forest of
cell trajectories: AddTree, AddBranch (to a tree), Update-
Branch, or Terminate (a branch). For the new cells, new
state vectors and the corresponding motion filter parameters
are initialized. For non-terminated tracks, measurements
are computed from labeled cell regions and are fed back to
the motion filter. Note that after apoptosis is detected, the
corresponding cell branch may not be immediately termi-
nated (Line 4). This is because the remains of the dead cell

Algorithm 1: TrackArbitration

Nlost,Ωnolabel ← ∅; Ω0 ← {x|ψk(x) = 0}
1 foreach cell candidate ω ⊂ ζk do

if ω ⊂ Ω0 then Add ω to Ωnolabel

2 foreach n ∈ Nk−1 do
Ωn ← {x|ψk(x) = n}
if Ωn = ∅ then Add n to Nlost

3 else if Ωn is divided and detected mitotic then
Set status of cell n to mitotic
foreach connected subregion ω ⊂ Ωn do

Assign a new unique label nd to ω
Set the parent of ω to n
AddBranch(n, nd)

4 else if detected apoptotic then
Set status to dead and UpdateBranch(n)

else UpdateBranch(n)
5 Match cell candidates in Ωnolabel with labels in Nlost
6 foreach n ∈ Nlost with no match in Ωnolabel do

if cell n is moving out of the border then
Set status to departed and Terminate(n)

else
Set status of cell n to maybe-dead

7 if the status continues for L frames then
Set status to dead and Terminate(n)

8 foreach ω ∈ Ωnolabel do
if ω is labeled n then UpdateBranch(n)
else if ω is from the image border then

Assign a new unique label nn to ω
AddTree(nd)

else Ignore

may still be visible in the images, which will be tracked un-
til they become invisible. In addition, a delayed-termination
mechanism is used to guard against temporary disappear-
ance of cells (Line 7). The delay parameter L is typically
set to 2 to 5 frames, depending on the acquisition interval.

3. Experiments and Results
The tracking system is implemented in MATLAB, with

the cell detector and level-set tracker written as MATLAB
external libraries in C++. The experimental environment
closely simulates online processing scenarios. The inputs
to the system are illumination-normalized gray-scale im-
ages generated by the acquisition software. The illumina-
tion normalization is done by dividing each input frame by
a smoothed copy of itself.

3.1. Data

The experiments utilized 5 uncompressed image se-
quences of human MG-63 osteosarcoma cells cultured un-
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der standard conditions (37◦C, 5% CO2). The sequences
are categorized into two sets (A and B), according to the
imaging protocol and how the cells are seeded.

Data Set A includes 4 image sequences acquired with
a 12-bit Qimaging Retiga EXi Fast 1394 CCD camera
mounted on a Zeiss Axiovert 135 TV microscope, at a
rate of 4 minutes/frame for 10 hours. Each acquired se-
quence consists of 150 frames, with a frame dimension of
1280×1024 pixels, and a resolution of 1.9 µm/pixel at a
magnification ratio of 4.9:1. The cells are seeded randomly
on a polystyrene dish. The images are cropped to a size of
512 × 512 pixels (Figure 1(a)) to speed up processing and
evaluation. The cell populations in the cropped sequences
are in the range of 80-110 cells/frame. One of the four se-
quences is used for training, the rest is used for testing.

Data Set B includes 1 sequence (Figure 1(b)) recorded
by an 8-bit CCD camera on a Zeiss IM35 microscope.
The sequence lasts for 43.5 hours with a frame interval of
15 minutes, corresponding to 174 frames/sequence. The
frame dimension is 512×512 pixels with a resolution of 3.9
µm/pixel at 5:1 magnification. The cells are seeded ran-
domly on a fibrin-coated slide, on which a 0.75×0.75 mm2

uniformly-concentrated square pattern of fibroblast growth
factor-2 (FGF-2) was created using a bioprinter [22]. The
cell population in the sequence is in the range of 350-750
cells/frame. The first 40 frames of the sequence are reserved
for training, the rest is used for testing.

3.2. Initialization

The initial cell populations are relatively sparse in our
experiments, and the tracking is automatically initialized
by the cell detector in the first frame of each testing se-
quence. The first 10 frames of each sequence are consid-
ered as “warming-up” frames to allow the system to sta-
bilize. The actual measurements start with the 11th frame
(referred to as the initial frame in the sequel). To evalu-
ate the initialization accuracy, we define precision as the
ratio of the number of detected cells to the total number of
detected objects, and recall as the ratio of the number of
detected cells to the total number of cells actually in the im-
age (determined visually by a human observer). Overall, the
automatic initialization achieved a precision of 98.1% and a
recall of 96.6% (measured in the initial frames).

3.3. Tracking Examples

Figure 3 demonstrates that the topology-constrained
level set can effectively prevent merging of closely con-
tacting cells and maintain cell identities. The images are
cropped from a sequence in Data Set A. Figure 4 shows an
example of tracking mitotic and apoptotic cells. The images
are taken from Data Set B.

Figure 3. Tracking closely contacting and partially overlapping cells.
The numbers at the top-left corner are the frame indices. Cells with
labels 2 and 10 are partially overlapping in frames 65-67. Cells 6
and 12 are closely passing each other.
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Figure 4. Tracking mitotic and apoptotic cells. Top: six frames of
a sequence with cell boundaries and centroids overlaid. Question
marks indicate cells in intermediate stages (either mitotic or apop-
totic). For daughter cells, the label of their parent is shown. Bottom:
a spatial-temporal plot of the corresponding forest of tracks for the
image sequence. Branched trees are thickened.

3.4. Comparison with Manual Tracking

The centroid locations of the cells for all sequences in
Data Set A are manually tracked by a human operator. Only
the cells that appear in the initial frame of each sequence
and their children are tracked. The manually and automati-
cally tracked trajectories (branches) are paired in the initial
frame of each sequence, and are compared in the remaining
frames. An automatically tracked cell trajectory is consid-
ered valid only if it follows the same cell through all the
frames that the cell appears. Our criterion for valid tra-
jectories is more stringent than the distance-based criterion
used by Debeir et al [5], since any swapping of identities
between two nearby cells will invalidate the trajectories of
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both cells and their children. Finally, for all the valid tra-
jectories, the distances between the manually and automat-
ically placed cell centroids are computed and reported as
mean± standard deviation. The tracking validity results are
shown in Table 1. For the valid cell trajectories, compari-
son between the automatically tracked and manually placed
cell centroid positions shows a difference of 2.4±2.3 pixels
(4.6±4.5 µm). Since the MG-63 cells are approximately
100 µm in size when fully stretched out, the cell centroid
positioning difference is much smaller than the cell size.

Table 1. Tracking validity compared to manual tracking

A1 A2 A3 Overall

Total Trajectories 81 68 93 242
Valid Trajectories 70 62 82 214

% Valid 86.4% 91.2% 88.2% 88.4%

3.5. Categorical Analysis of Tracking Errors

The sequence in Data Set B has a peak cell popula-
tion of over 700 cells/frame, making manual cell track-
ing unrealistic. Therefore, the cells are first tracked au-
tomatically using the tracking system. The results (Fig-
ure 6) are then loaded into a graphical editing tool, and
corrected by a human operator until no error is discern-
able. The operator can correct 7 different types of errors
that the tracking system may make, including: miss/false
detection of a newly-entered cell (MN/FN), miss/false de-
tection of mitosis (MM/FM), early/late termination of a cell
trajectory (ET/LT), or swapping of cell identities (SW). All
manual corrections are counted, as listed in Table 2. For
comparison, the total numbers of recorded cell trajectories
before and after manual corrections are 1425 and 1382, re-
spectively; and the total numbers of mitotic events before
and after corrections are 485 and 469, respectively. The
relatively high rates of false detection of mitosis and new
cells reflect that the system is oversensitive to these events.
However, most of the falsely detected cells were automati-
cally removed after a small number of frames. Swapping of
cell identities occurred mostly in densely populated regions,
where the boundaries between cells are highly blurred.

Table 2. Categorical analysis of tracking errors

MN FN MM FM ET LT SW

Counts 0 12 13 29 4 5 18

3.6. Growth Factor Directed Cell Responses

Bioprinting and time-lapse image analysis have allowed
us to simulate biological patterning of endogenous hor-
mones in laboratory environments, and study its relation to
cell responses. However, to date, researchers have primarily
been relying on manual or semiautomated image analysis,
which usually takes weeks for a single experiment and can
achieve little beyond simple cell counting. With our new au-
tomated cell tracking methodology, the cell responses can
be analyzed in ways that are not previously feasible. The
results shown in Figure 5 are extracted from the tracking
results of Data Set B, which verify that the cells on-pattern
are proliferating and migrating at a higher rate than the cells
off-pattern. Moreover, statistics show that the cells are en-
tering the pattern 155 times, while leaving the pattern 143
times. These two comparable numbers further confirm the
claim by Miller et al [13] that the primary organizational re-
sponse of the cells to uniformly-concentrated growth-factor
patterns is proliferation and not migration.
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Figure 5. Cell responses on and off the printed FGF-2 growth factor
pattern. (a) Cell counts versus time; (b) Accumulated number of
mitoses versus time; (c) Average migration speed versus time.

3.7. Computational Speed

The tracking system runs at an average speed of 200
frames/hour for processing the images in our experiments,
on a workstation with a 3 GHz processor and 4 GB memory.
Since the processing time for each frame (approx. 20 sec.)
is only a fraction of the typical image acquisition interval,
the system is well suited for tracking during acquisition.

4. Conclusion

We identified the key components of a fully-automated
system capable of simultaneously tracking hundreds of cells
under phase-contrast microscopy during acquisition. We
illustrated how the different components of the system
can be made collaborative to take advantage of both the
tracking-by-detection and the tracking-by-model-evolution
ideas. We demonstrated that incorporating topological con-
straints is a key to successful applications of the level set
method to cell-tracking. In addition to the reported exper-
iments, satisfactory tracking results were also obtained for
other cell types, including Swiss 3T3 cells and stem cells
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Figure 6. Automatically-tracked cell trajectories. The yellow and
blue squares indicate the location of the printed growth-factor pat-
tern. Red rectangles indicate cell division. Cells are displayed using
the colors and labels of their farthest ancestors.

(omitted for intellectual property reasons). Our methodol-
ogy enables automatic quantification of cell migration, pro-
liferation and apoptosis. Extension to quantifying quies-
cence will be straightforward; and the identification of dif-
ferentiation can be achieved using cell shape changes or flu-
orescent biomarkers. Further improvements on robustness
and processing speed are currently in progress.
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