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Abstract

Automated visual-tracking of cell populations in vitro using time-lapse phase con-
trast microscopy enables quantitative, systematic and high-throughput measure-
ments of cell behaviors. These measurements include the spatiotemporal quantifica-
tion of cell migration, mitosis, apoptosis, and the reconstruction of cell lineages. The
combination of low signal-to-noise ratio of phase contrast microscopy images, high
and varying densities of the cell cultures, topological complexities of cell shapes,
and wide range of cell behaviors poses many challenges to existing tracking tech-
niques. This paper presents a fully-automated multi-target tracking system that can
efficiently cope with these challenges while simultaneously tracking and analyzing
thousands of cells observed using time-lapse phase contrast microscopy. The system
combines bottom-up and top-down image analysis by integrating multiple collabo-
rative modules, which exploit a fast geometric active contour tracker in conjunction
with adaptive interacting multiple models (IMM) motion filtering and spatiotem-
poral trajectory optimization. The system, which was tested using a variety of cell
populations, achieved tracking accuracy in the range of 86.9%-92.5%.
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1 Introduction

Biological discovery and its translation into new clinical therapies are rapidly
advancing through the use of combinatorial, high-throughput experimental
approaches. Automated tracking of cell populations in vitro in time-lapse mi-
croscopy images enables high-throughput spatiotemporal measurements of a
range of cell behaviors, including the quantification of migration (transloca-
tion), mitosis (division), apoptosis (death), as well as the reconstruction of cell
lineages (mother-daughter relations). This capability is valuable for several ar-
eas including stem cell research, tissue engineering, drug discovery, genomics,
and proteomics (Huang et al., 1999; Patrick and Wu, 2003; Braun et al., 2003;
Al-Kofahi et al., 2006; Bao et al., 2006).

The automation of cell tracking faces many challenges. These challenges in-
clude: varying cell population densities due to cells dividing/dying and leav-
ing/entering the field-of-view; complex cellular topologies (shape deformation,
close contact, and partial overlap); and in particular, massive amounts of im-
age data. As an example, we have been using computer-aided bioprinting to
create complex patterned arrays of growth factors for inducing and directing
the fates of whole cell populations (Weiss et al., 2005; Campbell et al., 2005;
Miller et al., 2006; Phillippia et al., 2008). To quantify how these patterns
regulate cell behaviors over time and space requires time-lapse phase-contrast
microscopy to continuously record the cellular responses over extended periods
(e.g., 5-10 days), while monitoring multiple experiments in parallel. This pro-
cess routinely produces large datasets with low signal-to-noise ratios (Fig. 1).
Typical experiments produce over 100 gigabytes (GB) of image data consisting
of about 40,000 frames, with up to thousands of cells in each frame. Manual
cell tracking in these images by an experienced microscopist can routinely take
weeks of tedious work, while the results can be imprecise and subject to in-
terobserver variability. Therefore, for efficiency and accuracy, automated cell
tracking and analysis are required. A robust computer vision based system
can address the automated tracking requirements. Previously-reported cell
tracking systems, however, do not address all the challenges, and are typically
validated on short-term and/or small-scale experiments only.

In this paper, we present a fully-automated multi-target tracking system that
can successfully cope with the aforementioned challenges, and can simultane-
ously track hundreds to thousands of cells over the duration of a biological
experiment. The system exploits a two-level design, integrating multiple col-
laborative modules. The lower level consists of a cell detector, a fast geometric
active contour tracker, and an interacting multiple models (IMM) motion filter
adapted for biological behaviors. The higher level is comprised of two trajec-
tory management modules called the track compiler and the track linker.
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Fig. 1. Examples of phase contrast microscopy images of cell populations. (a), (c)
MG-63 human osteosarcoma cells. (b) Human amnion epithelial (AE) stem cell
population. The images are cropped to 512×512 pixels.

The system has several features. First, the geometric active contour tracker
simultaneously performs segmentation and data association by integrating im-
age intensity, edge, motion and shape information with a fast level set frame-
work. Second, the IMM filter with online parameter adaptation enhances the
tracking of varying cell dynamics, and provides the additional capability of
motion pattern identification. Third, the spatiotemporal trajectory optimiza-
tion approach makes the system capable of resolving complete or long-term
occlusions. Finally, although multiple algorithms are integrated in our system,
many of its parameters are estimated automatically, while the remaining ones
are intuitive to set.

As an example application for the tracking system, we demonstrate its use to
automatically measure stem cell lineages. This task requires long-term tracking
of cell locations. The accurate segmentation of cell boundaries is an added
benefit of our system for other applications, but it is not the emphasis of the
results reported here.

2 Related Work

An overview is presented below on the methods currently used for automated
tracking of cells in time-series images. These methods can be classified as
either tracking by detection or tracking by model evolution.

2.1 Tracking by Detection

In the tracking-by-detection approach, cells are first detected in each frame
based on intensity, texture, or gradient features (Al-Kofahi et al., 2006), and
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then the detected cells are associated between two or more consecutive frames,
typically by optimizing certain probabilistic objective functions. This approach
is computationally efficient and robust when cell density is low. However,
tracking mitosis can be problematic (Kirubarajan et al., 2001), and segmen-
tation errors generally increase with increasing cell density as a result of the
inability to discriminate between multiple touching cells.

For one example, Bahnson et al report on an automated system for measuring
cell motility and proliferation over time (Bahnson et al., 2005), but the system
is unable to distinguish between cells that are not well-separated. As another
example, Al-Kofahi et al used a seeded watershed method (Vincent and Soille,
1991) to detect cells, which can, to some degree, distinguish touching cells.
They then perform feature-based cell matching between two frames to deter-
mine cell trajectories and lineage (Al-Kofahi et al., 2006). They acknowledged
that tracking becomes difficult as multiple cells merge into a dense blob, and
they did not address cells leaving or entering the image. They also suggest
that their methodology could be implemented in real-time since tracking by
detection in general requires low computational overhead. In yet another ex-
ample, Yang et al used watershed and mean shift (Cheng, 1995) to segment
fluorescence-labeled nuclei to track cell cycle progression (Yang et al., 2005b),
but did not address cell lineage construction.

Another popular set of techniques (Smal et al., 2006, 2007; Godinez et al.,
2007) is based on particle filtering (Doucet and Ristic, 2002), which elegantly
integrates detection and data association in a Bayesian probabilistic frame-
work. While these techniques are well-suited for particle tracking in fluores-
cence microscopy image sequences, their extension to cell tracking in phase
contrast microscopy images is not straightforward.

2.2 Tracking by Model Evolution

In the tracking-by-model-evolution approach, parametric and non-parametric
model-based representations of cell appearances or shapes are evolved from
frame to frame (Debeir et al., 2005; Zimmer et al., 2002; Zimmer and Olivo-
Marin, 2005; Mukherjee et al., 2004) or in spatiotemporal volumes (Padfield
et al., 2006a,b, 2008) in order to keep track of moving cells over time.

Techniques based on parametric active contour models have the potential to
produce better estimates of cell morphologies, but must be adapted to handle
cell-cell contacts and mitosis at the cost of reduced computational efficiency.
For example, Zimmer et al adapted the classic “snake” model to track cells
by adding repulsive forces between snakes to handle close contact of cells and
incorporating “topological operators” to handle cell division (Zimmer et al.,
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2002; Zimmer and Olivo-Marin, 2005). However, the computational overhead
can be prohibitively expensive for tracking a large number of cells. Debeir et

al considered a simplified problem of tracking only the centroid positions, but
not the boundaries of the cells (Debeir et al., 2005), which permits a mean shift
based model (Cheng, 1995) to be used. However, similar to the snakes model,
this model cannot handle cell divisions. As a remedy, the authors proposed
to track backwards (from the last frame to the first), which simplified the
problem but made the tracking unsuitable for real-time processing during
image acquisition. Moreover, this method requires manual identification of
cell centroids for initialization, and cannot automatically incorporate new cells
entering the field-of-view.

Geometric active contour models implemented via the level set method (Osher
and Sethian, 1988) have recently been investigated for cell tracking applica-
tions (Mukherjee et al., 2004; Yang et al., 2005a; Dufour et al., 2005; Padfield
et al., 2006a,b, 2008). Geometric models are generally deemed to be more
powerful representations than parametric models. However, the use of level
sets for cell tracking had been dismissed before because, in its classic form,
it does not prevent two contacting boundaries from merging (i.e., it will fuse
multiple cells that move into close contact as one object), and it is computa-
tionally expensive. Most previous studies on level set cell tracking either did
not consider contacting cells (Mukherjee et al., 2004), or resorted to off-line
post-processing to correct cell fusions (Yang et al., 2005a; Bunyak et al., 2006).
These methods made little use of temporal contextual information. Padfield
et al approached tracking as a spatiotemporal segmentation task (Padfield
et al., 2006a,b, 2008). This method can potentially yield more accurate cell
segmentation than frame-by-frame processing. However, it requires additional
post-processing to separate cell clusters and to produce cell trajectories (Pad-
field et al., 2008). It is also more computational and memory intensive than
frame-by-frame sequential processing.

To partially address the problem of cell fusion, Zhang et al proposed a “coupled
geometric active contours” model (Zhang et al., 2004), which represents each
cell by a separate level set function, and enforces a coupling constraint that
prevents different contours from overlapping. Dufour et al further extended
this approach to 3-D for tracking fluorescent cells (Dufour et al., 2005). This
approach is constrained both by computer memory and computing power,
which makes it unsuitable to handle a large number of cells.

Another approach is to incorporate topological constraints, which explicitly
prohibit cell merging, while allowing cell division. Although the topological
control of level sets has been studied extensively for image segmentation prob-
lems (Han et al., 2003; Ségonne, 2005), its potential for tracking has yet to be
fully exploited. The application of topology-constrained level set methods to
cell tracking was first reported by our group (Kanade and Li, 2005; Li et al.,
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2006) and more recently, by Nath et al (Nath et al., 2006). The key idea
shared by Nath et al ’s method and ours is to label the contours of different
cells using different “colors”, and to prohibit the contours with distinct colors
from merging. The distinction between the two approaches, however, lies in
the way this coloring mechanism is implemented. Nath et al ’s method relies
on the four-color theorem (Appel and Haken, 1977a,b), which states that no
more than four colors are required to paint a set of disjoint regions on a plane
such that no two adjacent regions share the same color. Based on this the-
orem, their approach applies planar graph-vertex coloring to distinguish cell
contours, and requires four level set functions to handle an arbitrary number
of cells while preventing cell merging. On the other hand, our approach only
requires one level set function, along with a region labeling map that evolves
together with the level set function. Besides being more memory-efficient, the
region labeling map is conveniently utilized to store the identity of each cell,
which facilitates cell tracking.

3 Methods

Our tracking system integrates five modules (Fig. 2), including: 1) cell detec-

tor, which detects and labels candidate cell regions in the input image uti-
lizing region, edge, and shape information; 2) cell tracker, which propagates
candidate cell regions and identities across frames using a fast topologically-
constrained geometric active contour algorithm; 3) motion filter, which per-
forms prediction and filtering of the cell motion dynamics using a biologically
relevant adaptive interacting multiple models (IMM) filter; 4) track compiler,
which generates intermediate result called track segments by fusing the output
from the above modules, and judging on what is and what is not physically
possible; and 5) track linker, which oversees the entire tracking history and
establishes the complete cell trajectories and lineages. To achieve robust and
versatile cell tracking, our system combines the advantages of both tracking-
by-detection and tracking-by-model-evolution approaches (Section 2), while
mitigating against their disadvantages. Before dwelling on each module, we
provide an overview of the system workflow and establish notations.

3.1 System Workflow

Our system starts with processing the input images sequentially. Its output
is a complete spatiotemporal history of the cell trajectories, including cell
centroid positions, cell migration velocities, shape and intensity parameters
for every cell, as well as the parent-child relations between cells. For each
cell, the system may generate multiple track segments as intermediate output.
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Fig. 2. System Overview

Each track segment is associated with a unique positive-integer label n. Each
cell is identified using the label of its first track segment.

To initialize tracking, the cell detector detects all candidate cells in the first
frame I0(x, y) and generates an initial cell region labeling map ψ0(x, y), where
ψ0(x, y) = n if pixel (x, y) is part of cell n, and ψ0(x, y) = 0 if (x, y) belongs
to the background. Subsequently, for each frame Ik(x, y), k = 1, 2..., K:

Step 1: The cell detector segments cell regions in the image using a com-
bination of region-based and edge-based approaches. The output is a binary
map of cell regions, denoted χk(x, y). Each connected foreground component
in χk(x, y) is considered a cell candidate in frame k.

Step 2: The cell tracker propagates the cell region labeling ψk−1(x, y) from
frame k − 1 to frame k. We extended a fast geometric active contour algo-
rithm (Shi and Karl, 2005b) to segment cell regions and to propagate the
corresponding cell labels. First, a level set function φk(x, y) is initialized us-
ing ψk−1(x, y). Then, φ and ψ are evolved together to minimize an “energy”
functional that combines a region competition term (Zhu and Yuille, 1996),
a geodesic edge term (Caselles et al., 1997), and a motion term based on the
distribution of the predicted cell position from the motion filter. Topologi-
cal constraints are incorporated to the level set evolution to prevent contours
that represent different cells from merging. The output is the propagated cell
labeling map for frame k, denoted ψ̂k(x, y).

Step 3: The track compiler compares the outputs of the cell detector and the
cell tracker, and takes one of the following actions: creates a new or daughter
track segment, or updates an existing track, or terminates a track. For con-
tinuing track segments, the track compiler calls on the motion filter to update
the cell motion state in frame k, and to predict its state for frame k + 1.
The predictions will be useful for the track linking process (step 4), as well
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as for the level set evolution for the subsequent frame (step 5). For new track
segments, initial motion states are initialized based on quantities measured
from the corresponding cell regions. The output of this step includes the track
segments and an updated region labeling map ψk(x, y).

Step 4: The track linker examines all track segments up to frame k, and
detects whether two or more track segments correspond to one cell. It attempts
to link track segments in the spatiotemporal image volume, and to form more
complete cell trajectories. The updated cell trajectories are fed back to the
track compiler for subsequent tracking in frame k + 1.

The following sections elaborate on each module of this system.

3.2 Cell Detection

Cells in phase contrast microscopy normally appear as dark regions surrounded
by bright halo artifacts, except for mitotic (dividing) or apoptotic (dying) cells,
which appear rounder and brighter than the other cells. Consequently, the
cell detector takes two approaches: 1) region-based detection, which employs a
grayscale morphological filter and the level set method to extract non-mitotic
and non-apoptotic cells; and 2) edge-based detection, which detects mitotic and
apoptotic cells based on image edges, as well as a set of shape and appearance
criteria. The outputs of the two approaches are combined to yield a binary
image χ(x, y) : Ω → {0, 1}, in which each non-zero connected component is
considered a cell candidate. The steps of cell detection are illustrated in Fig. 3,
and detailed in the next two subsections.

3.2.1 Region-Based Cell Detection

The region-based cell detection approach consists of two steps: 1) morpho-
logical pre-segmentation, the result of which is used to estimate the intensity
distributions of cells and background; and 2) level set segmentation, which
achieves more robust cell localization.

The rolling-ball filter (Sternberg, 1983) is applied to pre-segment the non-
mitotic and non-apoptotic cells. The rolling-ball filter simulates rolling a ball
beneath the intensity profile of an image, removing the peaks that are un-
touchable by the ball surface. It is a grayscale morphological filter that is
related to the classical top-hat transformation (Meyer, 1979) by

I − rollball(I, r) = tophat(I, ballr),

where r is the radius of the rolling ball, and ballr is a non-flat half ball-shaped
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Fig. 3. Illustration of cell detection steps. Shown are the human amnion epithelial
(AE) stem cells. (a) Original image I. (b) Result of rolling-ball filtering Îr. (c)
Green circles represent initial level set contour for region-based cell detection. (d)
Region-based cell detection output χr. (e) Edge-based cell detection output χe. (f)
Combined output with each cell region shown in a different color.

structuring element with radius r. The parameter r is set roughly equal to
the average radius of cells to be detected. To apply the rolling-ball filter, the
input image is first inverted such that the cell interior appears brighter than
the surrounding halo. The operation Îr = Ī − rollball(Ī , r) on the inverted
image Ī will produce an image Îr with cell regions solidified and highlighted.
Otsu thresholding (Otsu, 1979) is then applied on Îr to obtain a binary mask
χ̂r of the cell regions.

The binary mask χ̂r constitutes a rough pre-segmentation of the image, which
enables us to obtain two histograms: a cell histogram hC, and a background
histogram hB. With these histograms, a Bayesian maximum a-posteriori prob-
ability (MAP) classifier can be implemented via the following test:

Classify a pixel I(x, y) as











cell, if hC(I(x, y)) > hB(I(x, y)),

background, otherwise.
(1)

To understand this, recall that a MAP classifier can be expressed via the Bayes
rule as: arg maxc p(c|I(x, y)) = arg maxc p(I(x, y)|c)p(c), where c ∈ {C,B} is
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the class label. The following relation holds:

p(I(x, y)|C)p(C)

p(I(x, y)|B)p(B)
=
hC(I(x, y))/mC ·mC/m

hB(I(x, y))/mB ·mB/m
=
hC(I(x, y))

hB(I(x, y))
,

wheremC = sum(hC) is the number of pixels in the cell regions,mB = sum(hB)
is the number of pixels in the background, and m = mC + mB is the total
number of pixels in the image.

Instead of a direct application of Equation (1), the MAP classifier is imple-
mented via the level set method (Osher and Sethian, 1988), which is less
sensitive to noise and yields robust segmentation. The method will be elabo-
rated in Section 3.3. After level set segmentation, an a priori size constraint is
imposed by removing the connected components with sizes smaller than smin

pixels or larger than smax pixels. The output is a binary map of segmented
cell regions χr.

3.2.2 Edge-Based Cell Detection

The edge-based cell detection approach aims to detect mitotic and apoptotic
cells, which appear rounder and brighter than the other cells. This approach
consists of three steps. First, the Canny edge detector (Canny, 1986) is applied
to compute an edge map of the image. Then, the regions that are enclosed by
edges are located and filled. The regions whose sizes fall outside the valid
range of [smin, smax] (Section 3.2.1) are discarded. Then, for each remaining
region, the mean pixel intensity µo in a w-pixel-wide rim of the region and the
eccentricity are computed. The eccentricity is measured by fitting an ellipse
to the region using second-moment matching and computing the ratio of the
distance between the foci of the ellipse and its major axis length. Finally, the
regions with eccentricities smaller than 0.95 and µo > µN + σN are selected as
cell regions, where µN and σN are respectively the mean and standard deviation
of the pixel intensities in a neighborhood of radius rN surrounding the region.
The parameters w and rN are set to w = max(1, r/3) and rN = 4r in our
implementation, where r is defined in Section 3.2.1. The output is a binary
map χe of mitotic and apoptotic cells.

3.3 Geometric Active Contour Cell Tracker

Because cells are highly-deformable objects and may divide over time, we
choose to represent cell boundaries using an implicit contour model, commonly
known as the geometric active contour model. In this model, the boundary of
each cell is considered as a closed contour C in the image domain Ω ∈ R

2. Its
contour is represented as the zero level line of a time-dependent embedding
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function φ : Ω× [0, T ]→ R, where

C(t) = {(x, y) ∈ Ω|φ(x, y, t) = 0},

such that φ(C(t), t) = 0 at any time. Evolving the embedding function φ
over time is an elegant method to keep track of the motion of the boundary,
including its topological changes such as splitting and merging.

Among various approaches to evolve a geometric active contour, the most
popular one is the level set method (Osher and Sethian, 1988), in which one
evolves the embedding function (or the level set function) φ according to an
appropriate partial differential equation (PDE). The PDE is usually derived
as the Euler-Lagrange equation:

∂φ

∂t
= −

∂E(φ)

∂φ
, (2)

which minimizes an application-specific “energy” functional E(φ).

For cell tracking, the energy functional is constructed such that its minimiza-
tion leads to the propagation of cell boundaries from frame k − 1 to frame k.
The propagated cell boundaries should not only match the cell appearances
in frame k, but also be consistent with the cell motion pattern. The energy
consists of a weighted sum of three terms, which are derived from: 1) the image
region statistics (Eregion); 2) the image edges (Eedge); and 3) the prediction of
cell motion (Emotion):

E = Eregion + wedgeEedge + wmotionEmotion, (3)

where wedge ≥ 0 and wmotion ≥ 0 are weighting coefficients. The dependency
on φ is omitted in the notation for simplicity. The energy terms implicitly
depend on φ, which will be further explained in Section 3.3.3.

Nk−1 is the set of cells to be propagated from frame k − 1 to frame k.
Each cell n ∈ Nk−1 occupies the region Ωn ⊂ Ω, enclosed by its boundary
Cn = {(x, y)|(x, y) ∈ ∂Ωn}. The region that is not occupied by cells is the
background, denoted by Ω0.

The region energy Eregion is based on the Bayesian region-competition frame-
work (Zhu and Yuille, 1996; Cremers et al., 2007):

Eregion =−
∑

n∈Nk−1

∫∫

Ωn

log p(Ωn|Ik(x, y))dxdy

−
∫∫

Ω0

log p(Ω0|Ik(x, y))dxdy +
ν

2

∑

n∈Nk−1

∫

Cn

dl. (4)

It represents the joint posterior probability that each pixel in frame k belongs
to a certain propagated region (first two terms), subject to a penalty on the
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total length of the region boundaries (third term). The parameter ν specifies
the strength of the penalty.

The edge energy Eedge measures the edgeness along the region boundaries.
It is formulated following the approach of geodesic active contours (Caselles
et al., 1997; Goldenberg et al., 2001), which can be interpreted as the length
of a curve in a Riemannian space whose metric is induced by the image edges:

Eedge =
∑

n∈Nk−1

∫

Cn

e(Cn)dl. (5)

The function e(·) is the edgeness metric, which is ideally zero at the locations
of image edges, and takes on larger values elsewhere.

The motion energy Emotion represents the joint probability that the cell regions
reside at the locations predicted by their respective motion filters:

Emotion = −
∑

n∈Nk−1

∫∫

Ωn

τ + log p̂k|k−1(x, y|Ωn)dxdy. (6)

Here, τ > 0 is a size-constraint parameter, which is necessary because log p̂k|k−1

is non-positive everywhere, and because the contour that minimizes Emotion

will enclose the entire image if τ = 0. In addition to providing motion context,
the distribution p̂k|k−1(x, y|Ωn) serves as an implicit shape prior. The definition
of p̂k|k−1(x, y|Ωn) will be further discussed in Section 3.3.3.

For tracking N > 1 cells in parallel, one key issue is how to uniquely identify
each cell region using the implicit contour representation. A straightforward
solution is to utilize N level set functions (Brox and Weickert, 2006; Mansouri
et al., 2006), each of which represents one cell. This solution, however, is
highly inefficient for simultaneously tracking thousands of cells. Inspired by the
approaches in (Feng et al., 2001; Shi and Karl, 2005b), we chose to represent all
regions using one level set function φ, and to keep track of the identities of cell
regions by evolving the region labeling function ψ (Section 3.1) simultaneously
with the level set function φ. The implementation of our approach will be
detailed in the next three sections.

3.3.1 Euler-Lagrange Equations

The first step towards tracking is to rewrite the energy terms such that they
explicitly depend on φ. We introduce three auxiliary functions: the region
indicator function Rn(·), the Heaviside function H(·), and the one-dimensional
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Dirac measure δ(·), defined as follow:

Rn(ψ) =











1, if ψ = n,

0, if ψ 6= n,
H(φ) =











1, if φ ≥ 0,

0, if φ < 0,
δ(φ) =

d

dφ
H(φ),

where φ < 0 applies to points inside the cell regions, and φ > 0 for points in
the background. The energy terms can now be rewritten as:

Eregion =−
∑

n∈Nk−1

∫∫

Ω
Rn(ψ)(1−H(φ)) log p(Ωn|Ik)dxdy

−
∫∫

Ω
H(φ) log p(Ω0|Ik)dxdy +

ν

2

∑

n∈Nk−1

∫∫

Ω
δ(φ)|∇φ|dxdy (7)

Eedge =
∫∫

Ω
δ(φ)|∇φ|edxdy (8)

Emotion =
∑

n∈Nk−1

∫∫

Ω
Rn(ψ)(1−H(φ))(τ + log p̂k|k−1(x, y|Ωn))dxdy. (9)

Herein, the dependency on (x, y) is omitted in the notations for simplicity.

Then, by computing the first variation ∂E(φ)/∂φ and by substituting it into
Equation (2), the Euler-Lagrange equation for minimizing the energy can be
obtained. The equation can be written in the following standard form:

∂φ

∂t
= −Fδ(φ), where F = Fregion + wedgeFedge + wmotionFmotion. (10)

The speed functions Fregion, Fedge, and Fmotion are defined as:

Fregion =
∑

n∈Nk−1

log p(Ωn|Ik)Rn(ψ)− log p(Ω0|Ik) +
ν

2
κ (11)

Fedge = ∇e · ∇φ/|∇φ|+ eκ (12)

Fmotion =
∑

n∈Nk−1

(log p̂k|k−1(x, y|Ωn)− τ)Rn(ψ) (13)

where

κ = ∇ ·
∇φ

|∇φ|
(14)

is the mean curvature.

3.3.2 Contour Merging Avoidance by Topology Constraints

The topological flexibility of the implicit contour representation not only facil-
itates the tracking of cell divisions, but also permits the merging of contacting
objects. This may cause two adjacent objects in one frame to falsely merge
into one object in the next frame. In the context of cell tracking, the merging
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of multiple cells would signify cell fusion. While cell fusion occurs in specific
cell types (e.g. activated macrophages and osteoclasts), it does not normally
occur for the cell types studied in this paper, nor in many other studies (Zim-
mer et al., 2002; Mukherjee et al., 2004; Zhang et al., 2004; Yang et al., 2005a;
Zimmer and Olivo-Marin, 2005; Debeir et al., 2005; Al-Kofahi et al., 2006;
Bunyak et al., 2006; Nath et al., 2006). To prevent false cell fusion, it is
important to incorporate a topological constraint that permits division but
prohibits merging.

To introduce the topological constraint, we borrow the concept of topological

numbers from digital topology (Han et al., 2003). Let N8(x, y) be the set of
8 neighbors of pixel (x, y). The topological number of (x, y) with respect to
the cell region Ωn (n > 0), denoted Tn(x, y), is the number of 4-connected
components in the set Ωn ∩ N8(x, y). Similarly, the topological number of
(x, y) with respect to the background Ω0, denoted T0(x, y), is the number
of 8-connected components in the set Ω0 ∩ N8(x, y). Let o(x, y) denote the
number of cell regions that overlap withN8(x, y). Then, the relaxed topological
number (Shi and Karl, 2005b) for pixel (x, y) is defined as:

Tr(x, y) = min
[

o(x, y),max
(

Tn(x, y), T0(x, y)
)]

.

The boundaries of two different cell regions can merge only if the level set
function changes sign from positive to negative at a point (x, y) with Tr(x, y) >
1. By detecting the points at which Tr > 1, and preventing the level set
function from changing sign at these points during the contour evolution,
merging of different cell regions can be effectively prevented.

3.3.3 Fast Implementation

Traditional implementations of the level set method require evaluating PDEs
(e.g. Equation (10)) using numerical methods (e.g., finite difference), which is
computationally expensive. Among various approaches to speed up the com-
putation (Cates et al., 2004; Lefohn et al., 2004; Pan et al., 2006), the fast
two-cycle algorithm proposed in (Shi and Karl, 2005a,b) is chosen, since it
achieves near real-time tracking speed, allows straightforward incorporation
of topological constraints, and is easy to implement.

The algorithm evolves a contour iteratively by operations as simple as switch-
ing elements between two linked lists, Lin and Lout, which keep track of the
points adjacent to the contour. This approach can be viewed as an extreme
case of the narrow-band scheme with a two-pixel bandwidth (Chopp, 1993;
Sethian, 1999). For tracking N contours, 2N linked lists are initialized from

14



the region labeling map ψ(x, y) according to:

Lout(n) = {x|ψ(x) = n,∃x∗ ∈ N4(x) where ψ(x∗) 6= n},

Lin(n) = {x|ψ(x) = n,∃x∗ ∈ N4(x) where x∗ ∈ Lout(n)}, (15)

where x ≡ (x, y). Accordingly, the level set function is defined as:

φ(x, y) =







































3, if (x, y) is an exterior pixel,

1, if (x, y) ∈ Lout(n), ∀n,

−1, if (x, y) ∈ Lin(n), ∀n,

−3, if (x, y) is an interior pixel,

(16)

which approximates a signed distance function.

Each contour-evolution iteration is performed in two cycles: an update cycle
and a regulation cycle.

Update Cycle: The update cycle evolves the contour according to the sign
of a speed function F̂ , which approximates F given in Equation (10) with all
curvature-dependent terms removed (i.e., the terms ν

2
κ in (11) and eκ in (12)

are no longer necessary):

F̂ (x, y) = F̂region(x, y) + wedgeF̂edge(x, y) + wmotionF̂motion(x, y), (17)

where

F̂region(x, y) =











1, if χ(x, y) > 0,

−1, otherwise,
(18)

F̂edge(x, y) = − (e(x+ 1, y)− e(x− 1, y)) (φ(x+ 1, y)− φ(x− 1, y))

+ (e(x, y + 1)− e(x, y − 1)) (φ(x, y + 1)− φ(x, y − 1)) , (19)

F̂motion(x, y) =
∑

n∈Nk−1

(logN (x, y|ẑn,k|k−1,Sn,k−1)− τ)Rn(ψ(x, y)). (20)

The region speed F̂region requires the cell candidate map χ(x, y) output from
the cell detector. Recall from Section 3.2 that χ(x, y) is computed by com-
bining two approaches: region-based detection and edge-based detection. In
region-based detection, the level set algorithm is executed using a uniform
lattice-of-circles initialization and the following speed function:

F̂ ∗(x, y) = hC(Ik(x, y))− hB(Ik(x, y)), (21)

which implements the MAP classifier given in Equation (1). The output seg-
mentation χr(x, y) is combined with the output from edge-based detection
χe(x, y) by a binary OR operation to obtain χ(x, y).
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The edge speed F̂edge is a central-difference approximation of the first term
of Equation (12). Inspired by (Huang et al., 2004), we define the edgeness
function e(x, y) to be the Euclidean distance transform of the edge map of
Ik(x, y), which is produced by the Canny edge detector. This definition induces
fewer local minima as opposed to the gradient-based definition in (Caselles
et al., 1997). The edge map is also utilized for edge-based cell detection (Sec-
tion 3.2.2), hence this computation can be reused.

The function N (·|z,S) in Equation (20) denotes a bivariate normal distribu-
tion with mean z and covariance S. The vector ẑn,k|k−1 is the centroid position
of cell n in frame k predicted by the motion filter, which will be explained fur-
ther in Section 3.4. Sn,k−1 is the shape matrix, computed as:

Sn,k−1 = cov{(x, y)|ψk−1(x, y) = n}. (22)

It can be considered as an elliptical approximation of the cell shape in frame
k − 1 by second-moment matching.

Regulation Cycle: The regulation cycle provides smoothness regulation to
the contour using local Gaussian filtering. This regulation has a similar effect
as the curvature-dependent terms in Equations (11) and (12), but avoids the
expensive computation of the curvature. This is because the curvature equals
∇2φ (i.e., the Laplacian of φ) when φ is a signed distance function (|∇φ| = 1);
and based on the theory of heat diffusion (Perona and Malik, 1990), evolving
a function according to its Laplacian is equivalent to Gaussian filtering.

More detail of the implementation is provided in Appendix A with pseudocode.
This algorithm is limited to a pixel-level accuracy unless the input image
is interpolated. A pixel-level accuracy is adequate for our study, since our
primary goal is to construct the cell trajectories over time, rather than to
delineate the cell boundaries at a sub-pixel precision.

3.4 Interacting Multiple Models Motion Filter

A motion filter is the fundamental building block of many tracking systems (Ris-
tic et al., 2004). It provides recursive estimations of the target states (such as
position, speed, and acceleration) based on noisy measurements. Essential to
any motion filter is a motion model that describes the target dynamics, and a
measurement model that relates states to measurements. Traditional motion
filters, such as the Kalman filter (Kalman, 1960) and the standard particle
filter (Gordon et al., 1993), are bound to use only one motion model, which is
inadequate for tracking biological cells because cell dynamics vary frequently
with time. The interacting multiple models (IMM) filter (Blom, 1984), instead,
is capable of incorporating multiple motion models in parallel, and it has been
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shown to be well suited for biological object tracking (Genovesio et al., 2006).

Cell motions are assumed to consist of a finite number of modes. Each mode
can be described by a linear model with additive Gaussian noise. The motion
models and the measurement model are defined as:

Motion models: sk = Fisk−1 + vi
k−1, i ∈ {1, ...,M}

Measurement model: zk = Hsk + wk.

Here, sk is the state vector of a cell in frame k, which consists of the centroid
position, velocity, and acceleration of the cell, i.e., sk ≡ (xk, ẋk, ẍk, yk, ẏk, ÿk)

′.
Note that the “prime” sign (’) denotes vector or matrix transposition. The cor-
responding measurement vector zk ≡ (xk, yk)

′ contains the measured centroid
position. Fi is the state transition matrix of model i, and H is the measure-
ment matrix that relates states to measurements. vi

k−1 and wi
k are the process

and measurement noise vectors, which are uncorrelated zero-mean Gaussian
processes with covariances Qi and R, respectively.

The IMM filter operatesM Kalman filters in parallel, each of which is matched
to a distinct motion model. It assumes that the transition between models is
regulated by a finite-state Markov chain, with probability pij of switching
from model i to model j in successive frames. However, rather than making
hard commitments to any single model, it maintains a weighting among the
models, which is determined as the probability of each model being correct
given the current measurement. Hence, the optimal state estimate at any
time instant is a mixture of Gaussian distributions. Each mixture component
is the estimate from a Kalman filter, weighted by the posterior probability of
the corresponding motion model. This leads to a mixture with exponentially
growing number of components in time because of the branching of model
switching hypotheses. To avoid the combinatorial explosion and make the
computation tractable, the IMM filter approximates the mixture of Gaussians
with a single Gaussian with equal mean and covariances.

The filtering recursion consists of two stages: prediction and correction. The
prediction stage predicts the state ŝk|k−1 at time k based on the state history
up to time k − 1; the correction stage generates a refined estimate ŝk by
incorporating the newly-arrived measurement zk. The mechanisms of the two
stages are detailed below.

Prediction: Starting from M weights ρi
k−1, states ŝi

k−1 and covariances Σi
k−1

from the previous iteration, the mixed initial condition is computed:

ŝ
0j
k−1 =

∑

i

ρ
i|j
k−1ŝ

i
k−1, (23)

Σ
0j
k−1 =

∑

i

ρ
i|j
k−1

[

Σi
k−1 +

(

ŝi
k−1 − ŝ

0j
k−1

) (

ŝi
k−1 − ŝ

0j
k−1

)′
]

, (24)
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where ρ
i|j
k−1 = pijρ

i
k−1/ρ

j
k|k−1, and ρj

k|k−1 =
∑

i pijρ
i
k−1. These are input to M

Kalman filters to compute the state prediction ŝ
j
k|k−1 and covariance Σ

j
k|k−1:

ŝ
j
k|k−1 = Fj ŝ

0j
k−1, (25)

Σ
j
k|k−1 = FjΣ

0j
k−1(F

j)′ + Qj. (26)

The combined state and covariance predictions can be determined by:

ŝk|k−1 =
∑

j

ρj
k|k−1ŝ

j
k|k−1, (27)

Σk|k−1 =
∑

j

ρj
k|k−1

[

Σ
j
k|k−1 + (ŝj

k|k−1 − ŝk|k−1)(ŝ
j
k|k−1 − ŝk|k−1)

′
]

. (28)

The predicted centroid positions ẑk|k−1 = Hŝk|k−1 of all cells are fed to the
cell tracker to guide the level set evolution in frame k (see Section 3.3.3).

Correction: Given the predicted states, covariances, and measurement zk,
the Kalman filters are used to obtain the updated state ŝ

j
k and covariance Σ

j
k.

ŝ
j
k = ŝ

j
k|k−1 + K

j
k(zk −Hŝ

j
k|k−1), (29)

Σ
j
k = Σ̂

j
k|k−1 −K

j
kHΣ̂

j
k|k−1, (30)

where K
j
k = Σ

j
k|k−1H

′(HΣ
j
k|k−1H

′ + R)−1 is the Kalman gain. The likelihood
that model j is activated in frame k is

λj
k = exp

[

−
1

2
(yj

k)
′(Sj

k)
−1y

j
k

]

/
√

2π det(Sj
k), (31)

where y
j
k = (zk − ẑk|k−1) is the innovation of Kalman filter j, and S

j
k is

the associated covariance. Then, the combined state ŝk and covariance Σk

estimates can be computed by Equations (27) and (28), with ρj
k|k−1 replaced

by ρj
k = ρj

k|k−1λ
j
k/(

∑

i ρ
i
k|k−1λ

i
k).

To initialize the IMM filter, the system tracks each cell without motion filter-
ing in the first three frames in which it appears. The measured cell centroid
positions in these frames are used to initialize the cell state ŝ0. The initial
model weights ρi

0 are set to equal 1/M (i ∈ {1, ...,M}), indicating the initial
complete uncertainty as to which model is more correct. The definitions of the
remaining filter parameters will be discussed in sections 3.4.1 and 3.4.2.

3.4.1 Motion Models

To adapt the IMM filter for cell tracking, cell motion models need to be defined
by specifying the system matrices Fi and H. Inspired by (Genovesio et al.,
2006), we define four motion models (M = 4): random walk (RW), constant
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Mixer

Kalman Predictor Kalman Predictor
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TPM 

Estimator

Predicted State 

Mixer

Fig. 4. Block diagram of the TPM-adaptive IMM filter framework for two models.

velocity (CV), constant acceleration (CA), and constant-speed circular turn
(CT). They represent four typical modes of cellular motion: Brownian mo-
tion, constant-velocity migration, constant-acceleration migration, and turn-
ing. Compared to the approach of Genovesio et al, the circular turn model is
a novel addition, since the amnion epithelial stem cells that we experimented
with perform an interesting turning motion. Moreover, instead of interpreting
the motion models as the extrapolation of cell positions (Genovesio et al.,
2006), we explicitly incorporate velocity and acceleration components into the
state vector, and derive the models based on state-space differential equa-
tions. The state-transition matrices corresponding to the RW, CV, CA and
CT models are, respectively:
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
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


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F4
k =




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,

where Ts is the time between the measurements (i.e., the frame interval). The
subscript k in the coordinated turn transition matrix F4

k indicates that it is
time varying. It depends on the angular turning rate θk, which can be com-

puted from the velocity and acceleration vectors as θk =
√

ẍ2
k + ÿ2

k/
√

ẋ2
k + ẏ2

k.
We refer the reader to (Zarchan and Musoff, 2005; Herman, 2002) for detailed
derivations of the state-transition matrices. The proposed motion models share
a common measurement matrix:

H =







1 0 0 0 0 0

0 0 0 1 0 0





 .

3.4.2 Parameter Estimation and Adaptation for IMM

With the system matrices defined, the noise covariances Qi, R, and the initial
error covariance matrix Σi

0 can be estimated from training sequences using
the expectation-maximization (EM) algorithm (Bishop, 2007). The details of
the EM-IMM parameter estimation procedure are presented in Appendix B.
While EM also permits the estimation of Fi and H, the resulting matrices may
be in arbitrary forms and are difficult to interpret. With the predefined system
matrices, we gain additional insight into the typical motion patterns of each
cell. Namely, we can identify if the cell motion is predominated by Brownian
motion, constant-velocity migration, accelerating migration, or turning motion
based on the corresponding model weights ρi

k computed by the IMM filter.

One important parameter yet to be specified is the Markovian model transition
probabilities pij. By convention, pij can be arranged in an M ×M transition
probability matrix (TPM) P, with pi denoting the i-th row of P. Tradition-
ally, the TPM is almost always treated as a fixed design parameter chosen
empirically. For many biological applications, however, a priori information
about the TPM may be inadequate or lacking. Cellular motion could vary con-
siderably or become unpredictable due to changes of experimental procedures,
extracellular environments, cell densities, and/or cell types. Moreover, impos-
ing an empirical TPM would contradict the very goal of biological discovery,
i.e., to discover unknown cell behavioral variations.
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With the above considerations, we chose to perform online minimum mean-
square error estimation of the TPM. Various algorithms exist for our purpose,
and we adopt the quasi-Bayesian algorithm (Jilkov and Li, 2004), which is
simple to implement, numerically stable, and requires negligible computational
overhead. The quasi-Bayesian estimation assumes that each row pi of the TPM
follows a Dirichlet prior distribution. The Dirichlet distribution is defined by:

p(pi|ai1, . . . , aiM) =
Γ(ai1 + · · ·+ aiM)

Γ(ai1) · · ·Γ(aiM)

M
∏

j=1

p
aij−1
ij , (32)

with hyperparameters aij ≥ 0. The Dirichlet distribution naturally satisfies the
unit simplex requirement

∑M
j=1 pij = 1 and pij ∈ [0, 1], for all i. The parameters

aij represent the unnormalized a priori TPM. If they are chosen as ai1 = · · · =
aiM = 1 for any i, the corresponding Dirichlet distribution of pi coincides
with the uniform distribution. Therefore, if a priori knowledge about the
TPM is unavailable, the quasi-Bayesian estimator can naturally be initialized
with the noninformative (uniform) prior pij = 1/M using parameters aij = 1
(i, j = 1, . . . ,M).

Algorithm 1: Quasi-Bayesian TPM Estimation

Input: A hyperparameter matrix A0 with entries aij,0 ≥ 0, i, j = 1, . . . ,M .
initialize

p̂i,0 = (ai1,0, . . . , aiM,0)/ai,0, where ai,0 =
∑M

j=1 aij,0, i = 1, . . . ,M

end

for k ← 1, 2, . . . do

for i← 1, . . . ,M do

for j ← 1, . . . ,M do

gij,k = 1 +
ρi

k−1

ρk−1P̂k−1λk
(λj

k − p̂′
i,k−1λk),

where ρk ≡ (ρ1
k, . . . , ρ

M
k ) and λk ≡ (λ1

k, . . . , λ
M
k )′

aij,k = aij,k−1 + (aij,k−1gij,k)/(
∑M

j=1 aij,k−1gij,k)
p̂ij,k = aij,k/(k + ai,0)

The quasi-Bayesian algorithm proceeds as follows. Upon receiving the first
measurement z1, a posterior probability p(pi|z1) can be obtained based on the
Dirichlet prior p(pi) for each model i, which is a weighted sum of M Dirichlet
distributions. The posteriors over the subsequent measurements will be mix-
tures of exponentially more Dirichlet distributions. The quasi-Bayesian ap-
proach utilizes a similar approximation as in IMM to obtain a quasi-posterior

distribution. At each time step, it approximates the posterior mixture of M
Dirichlet distributions by a single Dirichlet distribution, then computes the
quasi-posterior estimation p̂i as the mean of this approximated distribution.
This process is elaborated in (Jilkov and Li, 2004; Smith and Makov, 1978),
and can be summarized as a recursive algorithm (Algorithm 1). The quasi-
Bayesian algorithm integrates seamlessly with IMM, enabling us to update
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the TPM after the correction step in each filtering cycle (see Section 3.4). A
diagram of the TPM-adaptive IMM filter with two models is given in Fig. 4.

3.5 Track Compilation

The track compiler coordinates the cell detector, cell tracker and motion filter
to produce track segments. We use Nk to denote the set of labels of all track
segments created up to frame k. A track segment is active in frame k if it
was successfully tracked in frame k− 1, otherwise it becomes inactive. Let Ω0

denote the background region, and Ωn denote the cell region with label n. An
outline of the track compilation algorithm is shown in Algorithm 2.

Algorithm 2: Track Compilation

Ω0 ← {(x, y)|ψ̂k(x, y) = 0}
1 foreach cell candidate ω ⊂ χk do

if ω ⊂ Ω0 then AddTrack(nnew, k, ω)

2 foreach active track n ∈ Nk−1 do

Ωn ← {(x, y)|ψ̂k(x, y) = n}
3 if Ωn = ∅ then DeactivateTrack(n)
4 else if IsDivided(Ωn) then

if IsMitotic(n, k) then

foreach connected component ω ⊂ Ωn do
AddDaughterTrack(ndaughter, n, k, ω)

else
5 ω̂ ←SelectBestMatch(n, k,Ωn)

UpdateTrack(n, k, ω̂)
foreach connected component ω ⊂ Ωn \ ω̂ do AddTrack(nnew, k, ω)

6 else UpdateTrack(n, k,Ωn)

The compiler first compares the output of the cell detector and cell tracker,
χk(x, y) and ψ̂k(x, y). Each cell candidate in χk(x, y) that does not overlap
with any propagated cell region in ψ̂k(x, y) is considered a new cell. A new
track segment will be initialized, and ψ̂k(x, y) will be updated accordingly.

Next, the algorithm scans through all active track segments, and deactivates
track segments whose labels are not found in the propagated region labeling
ψ̂k(x, y). A track segment whose corresponding propagated cell region contains
only one connected component will be updated directly. If a cell region consists
of more than one connected components separated by a minimum distance
dmin, the track compiler will judge between two possibilities: 1) the cell divided
into daughter cells; or 2) one or more of these components are from occluded
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cells or close-by newly-entered cells. The algorithm will either create daughter
tracks or continue tracking using the component that best matches the cell
trajectory, depending on whether the cell is previously detected to be mitotic.

Details of several key operations are as follow.

AddTrack(ω, nnew, k) creates a new track segment labeled nnew; fills region ω
with nnew; and initializes the cell state based on measurements of ω.

UpdateTrack(n, k, ω) updates the track segment n using the features of region
ω, including the centroid location, mean intensity, area, and eccentricity. The
centroid and the mean intensity are fed to the motion filter to obtain a filtered
state of cell n in frame k. The last three features are used to classify a cell as
normal, mitotic, or apoptotic, using three-nearest-neighbor (3NN) matching
with the Mahalanobis distance to a set of training samples obtained off-line.

AddDaughterTrack(ndaughter, n, k, ω) creates a daughter track of cell n with a
unique label ndaughter, and fills the region ω with ndaughter. The state of the
daughter cell will be computed based on the measured centroid location and
mean intensity of ω, and the predicted state of cell n.

SelectBestMatch(n, k,Ωn) selects component ω̂ ∈ Ωn that best matches the
dynamics of cell n, i.e., the one which maximizes the innovation likelihood
given by Equation (31) among all dynamic models.

IsDivided(Ωn) returns true if region Ωn has multiple connected components
and the minimum distance between any two points in different components is
greater than a preset threshold dmin; otherwise, it returns false.

IsMitotic(n, k) returns true if cell n is classified as mitotic during the past T
frames using the approach described in UpdateTrack above.

The parameters dmin and T involved in the algorithm need to be adjusted for
specific datasets. Their values will be provided in Section 4.2.

3.6 Track Linking

The track linker module provides the global view. It oversees the entire track-
ing history, and it detects potential problems among all track segments up to
frame k based on two physical constraints: 1) a cell does not vanish unless
it leaves the field-of-view, dies and is released into the media, or is occluded;
and 2) a cell does not appear unless it enters from outside, divides from an-
other cell, or comes out of occlusion. The linker attempts to correct violations
of these constraints by linking track segments into complete cell trajectories,
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utilizing spatiotemporal context.

The track linking procedure is outlined in Algorithm 3. Here, Nlost ≡ {nl|l =
1, ..., L} denotes the label set of track segments that end before frame k, and
Nfound ≡ {nf |f = 1, ..., F} denotes the label set of track segments that start
after the first frame. Most operations in the algorithm are self-explanatory.
One vital step is the matching between lost and appearing track segments:
MatchTracks (Line 4).

Algorithm 3: Track Linking

Nlost,Nfound ← ∅

1 foreach track n ∈ Nk do
2 if LostInField(n, k) then Add n to Nlost

3 else if FoundInField(n, k) then Add n to Nfound

4 MatchTracks(Nlost,Nfound)
foreach nl ∈ Nlost do

5 if IsMatched(nl, nf ∈ Nfound) then
LinkTracks(nl, nf )

6 else if IsMatched(nl;nf1
, nf2

∈ Nfound) then
LinkTracks(nl;nf1

, nf2
)

7 foreach track n ∈ Nk do
8 if IsShort(n, k) then DeleteTrack(n)

In MatchTracks, a bipartite graph G is created, whose nodes correspond to
the labels in Nlost and Nfound. For each node pair (nl, nf ), an arc 〈nl, nf〉 is
created between node nl and node nf if the last centroid location (xl, yl, kl) of
track nl is within a spatiotemporal double cone centered at the first centroid
location (xf , yf , kf ) of track nf , i.e.,

√

(xl − xf )2 + (yl − yf )2 ≤ |kl − kf |R +R0, and

|kl − kf | ≤ D/2,

where D, R and R0 are user-defined parameters. Each arc 〈nl, nf〉 is assigned a
weight wlf = λmax

nl,kf
(nf ), which is the maximum innovation likelihood of track

nl on the measurement of track nf in frame kf (Equation (31)). Intuitively,
wlf indicates how likely track segment nf is a continuation of track segment
nl based on the dynamics of track nl.

Next, a maximum-likelihood matching is computed between tracks nl and nf .
The approach we reported previously (Li et al., 2007) only considered one-to-
one matches. Hence, it could not handle the case where a cell is lost during
mitosis, and whose daughter cells are re-detected in later frames. To handle
this case, we improved the algorithm to consider both one-to-one and one-to-
two matches. The algorithm relies on two inputs: an H × (L + F ) constraint
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matrix C and an H × 1 likelihood vector d. Here, H is the total number of
one-to-one and one-to-two matching hypotheses. L and F are, respectively,
the numbers of track segments in Nlost and Nfound. Matrix C and vector d are
constructed as follows:

For each arc 〈nl, nf〉 in G, a new row is appended to C and a corresponding
new element to d. Let h be the index of this new row. We set d(h) = wlf , and

C(h, i) =











1, if i = l or i = L+ f ,

0, otherwise.

For each node nl that is connected to multiple nodes nf1
, · · · , nfm

∈ Nfound

(m ≥ 2), all possible one-to-two matchings are enumerated, e.g., nl → (nf1
, nf2

),
nl → (nf1

, nf3
), and so on. For each of these hypotheses, say nl → (nf1

, nf2
), a

new row with index h′ to C and a corresponding new element is appended to
d. The value of d(h′) is set to be the maximum innovation likelihood of track
nl for the spatiotemporal mean of the starting points of tracks nf1

and nf2
,

with the constraint

C(h′, i) =











1, if i = l, i = L+ f1, or i = L+ f2,

0, otherwise.

With C and d constructed, the matching problem reduces to selecting a subset
of rows of C such that the sum of corresponding elements in d is maximized,
under the constraint that no two rows share common nonzero entries. This
can be posed as the following integer programming problem:

max
x

d′x, such that C′x ≤ 1, (33)

where 1 is a H × 1 vector of ones. x is a H × 1 binary vector to be solved for,
with x(h) = 1 if row h is selected in the solution, or x(h) = 0 otherwise. While
integer programming problems are in general NP-hard, the problem given in
Equation (33) can be solved exactly using linear programming. This is due to
the fact that the constraint matrix C is totally unimodular 2 , and the right-
hand sides of the constraints are all integers. In fact, if the above two conditions
are satisfied, a linear programming problem will always have an integer-valued
solution (Papadimitriou and Steiglitz, 1998). In our implementation, the open-
source software package lpsolve (Berkelaar et al., 2007) is used to solve the
above integer programming problem. A similar optimization approach was
used by Al-Kofahi et al (Al-Kofahi et al., 2006) for inter-frame cell matching.

2 A matrix is totally unimodular if the determinant of any square submatrix takes
one of the values in {-1, 0, 1}.
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As an optional step after the completion of the track linking procedure, all
cell trajectories that terminate in the field-of-view with lengthes shorter than
a preset threshold will be regarded as noise and removed (Line 7).

4 Experimental Methods

The tracking system is implemented in ISO C++. The inputs to the system
are gray-scale image sequences generated by the imaging software QED Image
(Media Cybernetics Inc.). Unprocessed microscopy images are often distorted
by spatial illumination inhomogeneity. The distortion is especially severe when
low-magnification objectives are used. To normalize illumination, a flat-field
correction filter is applied to the input images. This filter divides each input
frame by a preacquired light field image, and then it scales the output pixel
values to a fixed range. In our experiments, a light field image is unavailable.
Therefore, a pseudo light field is generated for each sequence by applying a
Gaussian filter with standard deviation of 50 to the first frame.

4.1 Data

The performance of our system is quantitatively evaluated on eight phase-
contrast microscopy image sequences. They are categorized into three data
sets (A, B and C ) according to the cell type, imaging protocol and cell seeding
method.

Dataset A includes two image sequences of MG-63 human osteosarcoma cells
acquired with a 12-bit Qimaging Retiga EXi Fast 1394 CCD camera mounted
on a Zeiss Axiovert 135 TV microscope, at a time-lapse interval of 4 minutes
for 10 hours. Each sequence consists of 150 frames, with a frame dimension
of 1280×1024 pixels, and a resolution of 1.9 µm/pixel at 4.9x magnification.
The cells are seeded randomly on a polystyrene dish. The images are cropped
to a size of 512×512 pixels (Fig. 1(a)) to speed up processing and evaluation.
The cell populations in the cropped sequences are in the range of 80-110 cells
per frame. An independent sequence of the same cell type was utilized for
training.

Dataset B includes four image sequences of proprietary amnion epithelial
(AE) stem cells (Fig. 1(b)), acquired using the same imaging protocol as
Dataset A, except that the acquisition rate is one frame per 10 minutes.
The AE cells are extracted from the placenta following live birth, and are
potentially a noncontroversial source of stem cells for cell transplantation and
regenerative medicine (Miki et al., 2005). The sequences were acquired over
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a duration of 42.5 hours, each consisting of 256 frames with 1280×1024 pix-
els/frame. The cell population density in each sequence is roughly 2000-5000
cells per frame, and is nearly confluent towards the end of the sequence. An
independent sequence of the same cell type was utilized for training.

Dataset C includes one sequence of MG-63 cells (Fig. 1(c)) recorded by an 8-
bit CCD camera on a Zeiss IM35 microscope. The sequence lasts for 43.5 hours
and has a frame interval of 15 minutes, corresponding to 174 frames/sequence.
The frame dimension is 512×512 pixels with a resolution of 3.9 µm/pixel at
5:1 magnification. The cells are seeded randomly on a fibrin-coated slide, on
which a 0.75×0.75 mm2 uniformly-concentrated square pattern of FGF-2 was
created using our bioprinter (Weiss et al., 2005). The cell population in the
sequence is in the range of 350-750 cells per frame. The first 40 frames of the
sequence are reserved for training, the rest is used for testing.

In addition to the above datasets, 35 sequences of AE cells were utilized to
qualitatively assess the tracking performance of the system.

4.2 Parameters

Many parameters involved in our system can be learned automatically from
training data. These trainable parameters include the process noise covariances
Qi (i = 1, . . . , 4), measurement noise covariance R, initial estimation error
covariance Σi

0 (i = 1, . . . , 4), and the model transition probability matrix
(TPM) P, all of which are required by the IMM motion filter. For each dataset,
the parameters are learned using a set of manually tracked cell trajectories.
The training set include 71 trajectories from dataset A, 101 trajectories from
dataset B, and 232 trajectories from dataset C.

The training procedure alternates between two steps. First, Qi, R, and Σi
0 are

trained using the EM-IMM algorithm (Appendix B) with an initial TPM P0.
This TPM has diagonal entries pii,0 = 0.85 and off-diagonal entries pij,0 = 0.05,
(i 6= j), which encodes the assumption that a cell tends to stay in a motion
mode rather than to switch to the other modes in successive time steps. It
is chosen instead of a uniform (uninformative) initialization as suggested in
Section 3.4.2 because it leads to better capability of model identification and
faster convergence of the parameters. Then, once Qi, R, and Σi

0 are learned,
the TPM is re-estimated using the Quasi-Bayesian algorithm (Algorithm 1)
with the hyperparameter matrix A0 set to equal the previous P. The procedure
iterates until the TPM converges.

The above procedure converges to a near identical TPM for all datasets, which
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approximately equals:

P =





















0.9793 0.0074 0.0064 0.0070

0.0072 0.9834 0.0037 0.0056

0.0272 0.0281 0.9156 0.0290

0.0276 0.0296 0.0279 0.9148





















(34)

In addition to the tendency for cells to stay unchanged in a motion mode, the
TPM indicates that the random walk and constant-velocity motions are more
persistent, whereas the acceleration and turning motions are relatively tran-
sient. It is used to initialize the hyperparameter matrix A0 in the subsequent
experiments. In contrast to the TPM, the learned values of Qi, R, and Σi

0

vary between different datasets. Their specific values are less informative than
the TPM, and are omitted here.

The settings of the additional parameters are summarized in Table 1. These
parameters can be intuitively determined based on direct observation. For ex-
ample, the cell detector parameter r is set to roughly equal to the average cell
radius. The size constraints smin and smax loosely correspond to the expected
cell size range. The cell tracker parameters wedge, wmotion, and τ are deter-
mined empirically, and they are mostly held constant for different datasets.
The parameter T is related to the maximum duration of mitosis events. The
track linker parameters D, R, and R0 are constrained by the maximum cell
migration speed.

Table 1
Summary of parameter settings for each dataset.

Dataset r smin smax wedge wmotion τ dmin T D R R0

A 10 16 4000 0.1 0.1 0.001 10 10 10 5 10

B 5 5 2500 0.1 0.2 0.001 8 10 10 5 20

C 4 4 1000 0.1 0.1 0.001 3 5 6 3 5

4.3 Cell Detection Accuracy Assessment

To quantitatively evaluate cell detection accuracy, the centroid positions of
all visible cells in 5 randomly selected images in each dataset were manually
identified using an interactive program. The human operators can navigate
through contextual frames to better identify overlapping cells, and to distin-
guish cells from background and other objects (e.g., glass scraps, air bubbles,
etc.) that may exist in the field.
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The detection accuracy is gauged using two metrics: 1) precision, which is the
ratio of the number of detected cells to the total number of detected objects,
and 2) recall (a.k.a. sensitivity), which is the ratio of the number of detected
cells to the total number of cells actually in the image, visually determined by
the human observer. In terms of true positives (TPs), false positives (FPs),
true negatives (TNs) and false negatives (FNs), the metrics can be computed
as: precision = TP/(TP + FP ) and recall = TP/(TP + FN).

4.4 Cell Tracking Accuracy Assessment

The image sequences used for cell tracking accuracy assessment were selected
to be feasible for manual tracking. Only the cells that appear in the initial
frame of each sequence and their progeny were manually tracked. The man-
ual tracking results were obtained after weeks of expert scrutiny, and gained
consensus among multiple observers. The manually and automatically tracked
trajectories (branches) were paired in the initial frame of each sequence, and
they were compared in the remaining frames. An automatically tracked cell
trajectory is considered valid only if it follows the same cell through all the
frames that the cell appears. Any swapping of identities between two nearby
cells will invalidate the trajectories of both cells and their progeny.

The sequences in datasets B and C contain hundreds to thousands of cells per
frame, making it unrealistic to manually track all cells in the entire sequences.
To make quantitative validations feasible, a 256×256-pixel region of interest
(ROI) is defined in each image sequence of dataset B, and a 192×192-pixel
ROI in dataset C. The automated tracking results are manually examined only
within the ROI volume. In addition to the tracking validity defined previously,
the ratio of cell divisions that were correctly tracked by the tracking system
was also evaluated. This ratio is referred to as the division tracking ratio. A
division is considered to be correctly tracked if the daughter cells are correctly
located and the cell lineage is successfully established.

5 Results

5.1 Tracking Examples

Before presenting quantitative results, we provide several explanative exam-
ples to demonstrate the key features of our system.

Fig. 5 demonstrates that the topology-constrained level set can effectively

29



Fig. 5. Tracking contacting and partially overlapping AE cells. The numbers at the
top-left corner are the frame indices. Cells 12, 15 and 18 are partially overlapping
in frames 151-152. Cells 15 and 12 are closely passing each other in frames 162-167.

prevent merging of closely contacting cells and maintain cell identities. In
addition, cells (e.g., cell 25) are automatically initialized when they enter, and
they (e.g. cells 16 and 20) are removed when they exit the field of view. This
example is cropped from one of the sequences in dataset B.

Fig. 6. Tracking mitotic and apoptotic MG-63 cells. Left: Six frames with cell
boundaries and centroids overlaid. Question marks indicate cells in intermediate
stages (either mitotic or apoptotic). For daughter cells, the label of their parent
is shown. Right: A spatiotemporal plot of the corresponding cell trajectories. The
tick marks on the bounding box indicate the time instants of the six frames shown
in the left panel, and the triangle indicates frame 61.

Fig. 6 shows an example of tracking mitotic and apoptotic cells. The images
are taken from dataset C. Since the appearances of mitotic and apoptotic
cells are almost identical during a certain period (frames 62 and 63), they
can only be distinguished with sufficient temporal information (frames 64–
68). This example illustrates that our tracking system can effectively detect
mitoses and apoptoses, and distinguish between them by using the temporal
context.

To illustrate the operation of the IMM filter (Section 3.4) and demonstrate
its superiority to Kalman filter, an artificial example was devised as shown in
Fig. 7. To reflect realistic cell motion and to serve as the ground truth, the
trajectory of a cell in one of the sequences in dataset B was manually tracked.
Gaussian noise of covariance 25I is added to the trajectory to simulate the
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measured cell positions during tracking, where I is a 2 × 2 identity matrix.
The IMM filter with the four motion models described in Section 3.4.1, as well
as a standard Kalman filter using only the constant-velocity (CV) model, is
then executed to estimate the cell trajectory based on the noisy measurements.
Both filters utilized equivalent parameter settings.

As shown in Fig. 7(a), the trajectory estimated by the Kalman filter (green
curve) diverges from the true trajectory (black dashed curve) at the arrow-
indicated positions, indicating that the CV model is no longer adequate to
represent the turning motion at these locations. In comparison, the trajectory
estimated by the IMM filter stays close to the ground truth, and exhibits
appreciably smaller deviation from the true trajectory.

To provide additional insights into the IMM filter, we plotted the model
weights ρj

k (j = 1, . . . , 4) (Fig. 7(c)) and the turn rate θk (Fig. 7(d)) esti-
mated by the filter during its operation. As shown in these plots, the major
turning points of the trajectory are indicated by peaks in the estimated turn
rates, with higher peaks indicating tighter turns. An interesting exception is
at the location indicated by triangle 3, where a near 180◦ turn is spotted in
the trajectory, but the corresponding peak in the turn rate is relatively small.
By examining the ground truth, we found that the cell stopped at the afore-
mentioned location for a short period (approx. 20 minutes) before heading
toward a different direction, resulting in a smaller turn rate. The stopping
motion is captured by an increase in the random-walk model weight at the
corresponding location in Fig. 7 (c).

Fig. 7. IMM filter versus Kalman filter. Black dashed curves in (a) and (b) represent
the true trajectory of a cell. Gray dotted curves show the noisy trajectories after
superimposing additive Gaussian noise. Solid green curves are the estimated trajec-
tories by the Kalman and IMM filers using the noisy trajectories as measurements.
Plots (c) and (d) show the model weights ρ

j
k (j = 1, . . . , 4) and the turn rates θk

estimated by the IMM filter during its operation. Colored triangles in (b) and (d)
indicate major turning points of the trajectory.
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Fig. 8. Example of spatiotemporal track linking. Top: Track segments output by
the track compiler. Bottom: Completed cell trajectories after track linking. The
numbers in the parentheses indicate cell generations.

The effect of spatiotemporal track linking is illustrated in Fig. 8. The top
row of the figure shows the track segments, which are intermediate outputs
of the track compiler. As shown, the trajectory of cell 1 and its daughters are
broken in to multiple segments due to abrupt jumping motions of the cells.
The bottom row shows the result after track linking, where the identities of
the daughter cells and their lineage with cell 1 were successfully recovered.

With the incorporation of IMM motion filter and spatiotemporal track linking
(Section 3.6), our system achieves superior robustness in handling varying cell
motions and long-term occlusions. Fig. 9 shows a 20×20-pixel portion of the
tracking result for a sequence in dataset B. In this example, cell 116 is occluded
by cell 47 in frame 36 and reappeared in frame 46. With a standard Kalman
motion filter and no spatiotemporal linking, the system (top row) switched the
identities of cells 47 and 116 in frame 16, detected a false mitosis in frame 36,
and eventually lost cell 47 after frame 36. By replacing the Kalman filter with
an IMM filter, the system correctly maintained the identities of cell 47 and
116, but it still lost track of cell 116 due to occlusion (middle row). Finally,
by incorporating spatiotemporal optimization, the system correctly recovered
the trajectory of cell 116 after occlusion (bottom row).

5.2 Detection and Tracking Accuracy

The selected experimental datasets represent high and varying densities of
cell populations as well as a variety of complex cell behaviors, which pose
significant challenges for the tracking system. For example, the cell populations
in datasets B and C are nearly confluent towards the end of each sequence,
with densities as high as approximately 30 cells per 1002 pixels. In addition,
while the typical diameter of AE stem cells in the experimental image sequence
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Fig. 9. Tracking AE cells through occlusion. Cell 116 was completely occluded by cell
47 from frame 35 to 45 and reappeared in frame 46. The numbers at the top-right
corner are frame indices. The trailing curves represent cell trajectories. Different
colors represent different cell lineages. Top: With standard Kalman motion filter
and no spatiotemporal track linking, the system switched the identities of cell 116
and cell 47 and loses track of cell 116 eventually. Middle: By replacing the Kalman
filter with an IMM filter, the system correctly maintained the identities of cells 47
and 116. Bottom: By incorporating both IMM motion filter and spatiotemporal
track linking, the system successfully tracked all cells.

is around 5-12 pixels, some cells migrate more than 20 pixels between frames,
which is a distance much larger than the cell diameter. The active contour
tracker alone is insufficient to handle such large displacements. Moreover, some
of the cells were frequently occluded in some frames and reemerged in other
frames. Under these challenging conditions, our system achieved high detection
and tracking accuracy as summarized in Table 2 and Table 3, respectively.

Table 2
Summary of cell detection accuracy for all datasets.

Dataset Cell Count Detected FP FN Precision (%) Recall (%)

A 673 662 9 20 98.6 97.0

B 9879 9987 271 163 97.3 98.4

C 2126 2107 44 63 97.9 97.0

Overall 12678 12756 324 246 97.5 98.1
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Fig. 10. Visualization of the tracking result of AE cells. Left: Spatiotemporal visual-
ization of cell trajectories. Right: One of the selected regions used for quantitative
validation with cell trajectories overlaid. Yellow rectangles indicate occurrences of
mitosis in the past T = 10 frames.

The first column of Table 3 summarizes the tracking performance of our system
with a standard Kalman motion filter and a constant-velocity motion model.
The second column shows the performance with an adaptive IMM motion filter
and four motion models as described in Section 3.4.1. The third column shows
the performance after the incorporation of spatiotemporal track linking. As
the statistics suggests, the incorporation of spatiotemporal track linking leads
to significant performance boosts (as much as a 12% difference) compared to
the Kalman filter-based system. In comparison, the IMM filter provides rel-
ative small performance improvements. However, the IMM filter still always
outperforms the Kalman filter, and helps to resolve certain challenging track-
ing scenarios. One example is shown in Fig. 9. With the incorporation of IMM
filter and spatiotemporal track linking, our system achieved overall tracking
validity of 92.5% for dataset A, 86.9% for dataset B, and 90.9% for dataset C.
It achieved overall division tracking ratios of 100% for dataset A, 86.3% for
dataset B, and 88.1% for dataset C.

A visualization of the automatically tracked trajectories of more than 4000
AE stem cells across 256 frames is provided in Figure 10, and a visualization
of the tracking result for MG-63 cells is shown in Figure 11.

5.3 Lineage Construction

One application of the tracking system is to automatically reconstruct cell
lineage maps, which is especially important for stem cell research. In addition
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Table 3
Summary of tracking validity and division tracking accuracy of the automated track-
ing results as compared with manual tracking.

Tracking Validity

Sequences Kalman IMM IMM + Track Linking

A1 70/81 (86.4%) 72/81 (88.9%) 75/81 (92.6%)

A2 82/93 (88.2%) 82/93 (88.2%) 86/93 (92.5%)

B1 70/92 (76.1%) 73/92 (79.3%) 81/92 (88.0%)

B2 90/117 (76.9%) 94/117 (80.3%) 101/117 (86.3%)

B3 81/104 (77.8%) 83/104 (79.8%) 91/104 (87.5%)

B4 80/108 (74.1%) 84/108 (77.8%) 93/108 (86.1%)

C1 98/121 (81.0%) 102/121 (84.3%) 110/121 (90.9%)

Division Tracking Ratio

Sequences Kalman IMM IMM + Track Linking

A1 1/1 (100%) 1/1 (100%) 1/1 (100%)

A2 0/0 (N/A) 0/0 (N/A) 0/0 (N/A)

B1 43/55 (78.2%) 43/55 (78.2%) 47/55 (85.5%)

B2 41/52 (78.8%) 42/52 (80.8%) 45/52 (86.5%)

B3 36/48 (75.0%) 37/48 (77.1%) 41/48 (85.4%)

B4 44/57 (77.2%) 47/57 (82.5%) 50/57 (87.7%)

C1 32/42 (76.2%) 33/42 (78.6%) 37/42 (88.1%)

to revealing the mother-daughter relations between cells, metrics such as sym-
metry and division times can also be derived from lineage maps. Symmetry,
which is defined as the mitotic fraction, is a measure of the capability of a
stem cell to divide and produce daughter cells that are essentially identical to
the mother, thus representing self-renewal (Deasy and Huard, 2002). And, the
division time, which is defined as the lapsed time between cytokinetic events,
is a key parameter in determining the expansion rate of stem cell populations.
For example, these metrics can be used in predictive models of stem cell popu-
lation growth during cell culture expansions (Deasy and Huard, 2002), as well
as the design and optimization of subculturing strategies.

We utilized the system to construct the lineage maps for the entire populations
of AE stem cells in dataset B and of MG-63 cells in dataset C. Our system
correctly constructed 62.4% of the lineage trees for AE stem cells and 68.3%
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Fig. 11. Automatically-tracked MG-63 cell trajectories. The yellow and blue dashed
lines indicate the location of the printed growth-factor pattern. Red ellipses indicate
cell division. Cyan squares indicate dead cells. Yellow squares indicate mitotic or
apoptotic cells. Cells inherit the colors of their farthest ancestors. (a) A sample frame
with cell centroids overlaid. (b) Magnified view of the highlighted region in (a) with
automatically tracked cell trajectories overlaid. (c) and (d) 2-D and spatiotemporal
rendering of the automatically tracked cell trajectories.

for MG-63 cells as measured in the selected regions of interest (see Section
3.4); Fig. 12 shows samples of the correctly constructed lineage trees with
cells undergoing multiple divisions. In general, achieving higher accuracy is
challenging since a single tracking error will invalidate the entire lineage tree
that the cell belongs to. However, alternative approaches for mitosis/apoptosis
event detection (Li et al., 2008) and spatiotemporal image processing tech-
niques (Padfield et al., 2006a) could potentially improve lineage tracking ac-
curacy. Increasing the image acquisition rate would be another possibility to
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reduce ambiguities and hence increase tracking accuracy. We also emphasize
that acceptable accuracy levels required in various experiments, using large
and dense cell populations, will likely vary depending on the specific biological
question being proposed.

  !   "!"  #!#  $!$  %!%  &!&  '!   (!"  )!# " !$ ""!% "#!& "%!  "&!" "*!# "'!$ "(!% ")!& #"!  ##!" #$!# #%!$ #&!% #*!& #(!  #)!" $ !# $"!$ $#!% $$!& $&!  $*!" $'!# $(!$ $)!% % !& %#!  

+,-./01234/1566!778

"## "$!$ 

#$!" $*!% 

"(!% $#!" 

"#$  (!# 

#"!& $ !" 

#&!% $%!  

"#%  '!& 
#)!" $'!  

"#& #*!$ 

"#* #$!  

"#) ")!% 

"$ "&!$ 

# !" $&!% 

")!# $%!& 

"$" $$!" 

"$#  )!% 
#"!% $"!# 

"$$ ""!& 

#"!$ $$!# 

# !# $#!" 

 !"#$  #"#$  %"#$  &"#$  '"#$  ("#$  )"#$  *"#$ !$"#$ ! "#$ !!"#$ !#"#$ !%"#$ !&"#$ !'"#$ !("#$ !)"#$ !*"#$ #$"#$ # "#$ #!"#$ ##"#$ #%"#$ #&"#$ #'"#$ #("#$ #)"#$ #*"#$ %$"#$ % "#$ %!"#$

+,-./01234/1566"778

!$!  *"#$
!!"$$ % "#$

!$# #%" &

!$% !)"$$

!$&  &"$$

!$' !&" &

!$( !$"%&
!$"$$ %$"%&

!$)

!$*  &"$$

 *"#$ #%"#$

 *" & #%" &

! $ ! " &

 '"%& #)"$$

 (" & #)"#$

!   #"#$

 )"#$ #!"$$

 '"%& #$" &

! ! !'"#$

Fig. 12. Portions of color-coded lineage maps of AE cells (top) and MG-63 cells
(bottom) constructed based on automated tracking results. Green line segments
indicate the relative migration distances, where a longer line segment suggests a
longer migration distance up to the current time point. Black arrows indicate cell
departure. Blue crosses indicate cell death. Texts on the lineage lines show the
division times.

5.4 Computation Time

All of the above experiments were conducted on a computer with a 2.66 GHz
Intel Xeon processor and 4 GB memory, running 64-bit Gentoo Linux operat-
ing system. Our system runs at an average speed of 90 frames/hour for tracking
approximately 3000 cells in a 1280×1024 pixels/frame image sequence. The
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most time consuming computation step is the level set evolution.

6 Conclusion

We developed and validated an automated system capable of simultaneously
tracking thousands of individual cells in dense cell populations in phase con-
trast microscopy image sequences. The system employs a modular design,
which integrates an efficient cell detector, a topology-constrained geometric
active contour tracker, a biologically relevant IMM motion filter, and spa-
tiotemporal trajectory optimization. Our system enables automatic quantifi-
cation of cell migration, proliferation, apoptosis, and construction of cell lin-
eage maps, which facilitates the analysis of massive biological datasets. For
future work, we will focus on further improving tracking accuracy for auto-
mated cell lineage construction, and applying the system to tackle challenging
biological problems.

A Two-Cycle Fast Level Set Algorithm

Algorithm 4 provides the pseudocode of the fast dual-cycle level set algorithm
described in Section 3.3.3. Figure A.1 illustrates the key steps of the algorithm.

Fig. A.1. Illustration of fast level set initialization, evolution, and finalization.

The input to the algorithm is the region labeling map ψk−1(x, y) for frame
k − 1; the output is the evolved labeling map ψ̂k(x, y) for frame k. There
are three parameters: the maximum iterations of the main loop (Tmax), the
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Algorithm 4: Fast Dual-Cycle Level Set Evolution

Input: region labeling map ψk−1(x, y); parameters Tmax, U , V
initialize

ψ̂k(x, y)← ψk−1(x, y); Nk−1 ← ∅

foreach labeled region Ωn ⊂ ψ̂k(x, y) do
Initialize φ(x, y), Lin(n), and Lout(n) according to (15) and (16)
foreach (x, y) ∈ Lout(n) do ψ̂k(x, y)← 0
Nk−1 ← Nk−1 ∪ {n}

end

// main loop

for t← 1, . . . , Tmax do
stop←false

for u← 1, . . . , U do // update cycle

foreach n ∈ Nk−1 do

foreach (x, y) ∈ Lin(n) ∪ Lout(n) do compute F̂ (x, y)
foreach (x, y) ∈ Lout(n) do

if F̂ (x, y) > 0 then SwitchIn(x, y)

UpdateInterior(Lin(n))
foreach (x, y) ∈ Lin(n) do

if F̂ (x, y) < 0 then SwitchOut(x, y)

UpdateExterior(Lout(n))

1 if stopping condition is met then stop←true and exit cycle

for v ← 1, . . . , V do // regulation cycle

foreach n ∈ Nk−1 do

foreach (x, y) ∈ Lin(n) do
2 if (G ∗ φ)(x, y) < 0 then SwitchIn(x, y)

UpdateInterior(Lin(n))
foreach (x, y) ∈ Lout(n) do

3 if (G ∗ φ)(x, y) > 0 then SwitchOut(x, y)

UpdateExterior(Lout(n))

if stop then exit main loop

finalize

foreach n ∈ Nk−1 do

foreach (x, y) ∈ Lout(n) do

4 ψ̂k(x, y)← arg minn∗∈N∗ distance(n∗, n|x, y)

end

number of iterations for the update cycle (U), and the number of iterations for
the regulation cycle (V ). U and V controls the relative strength of regulation,
which replace the parameter ν in Equation (11). We set Tmax = 500, U = 3,
and V = 1 in all the experiments.
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The stopping condition (Line 1) is satisfied if F (x, y) ≤ 0,∀(x, y) ∈ Lout(n),∀n
and F (x, y) ≥ 0,∀(x, y) ∈ Lin(n),∀n. The discrete Gaussian kernel G (Lines
2 and 3) is approximated by:

G =















1 2 1

2 4 2

1 2 1















. (A.1)

N∗ (Line 4) denotes the set {n ∈ Nk−1|Ωn ∩N4(x, y) 6= ∅}, and the distance
function is defined as:

distance(n∗, n|x, y) = |Ik(x
∗, y∗)− Ik(x, y)|, (A.2)

where (x∗, y∗) ∈ N4(x, y), ψ(x∗, y∗) = n∗, and ψ(x, y) = n.

The psuedocode of the procedures SwitchIn, UpdateInterior, SwitchOut, and
UpdateExterior, which are required by the dual-cycle algorithm, are listed in
Algorithms 5, 6, 7, and 8.

Algorithm 5: Procedure SwitchIn

foreach (x, y) ∈ Lout(n) do
if Tr(x, y) 6= 1 then exit

remove (x, y) from Lout(n) and add it to Lin(n)
foreach (x∗, y∗) ∈ N4(x, y) with φ(x∗, y∗) = 3 do

add (x∗, y∗) to Lout(n); φ(x∗, y∗)← 1

Algorithm 6: Procedure UpdateInterior

foreach (x, y) ∈ Lin(n) do

if φ(x∗, y∗) < 0, ∀(x∗, y∗) ∈ N4(x, y) then
remove (x, y) from Lin(n); φ(x, y)← −3

Algorithm 7: Procedure SwitchOut

foreach (x, y) ∈ Lin(n) do
remove (x, y) from Lin(n) and add it to Lout(n)
foreach (x∗, y∗) ∈ N4(x, y) with φ(x∗, y∗) = −3 do

add (x∗, y∗) to Lin(n); φ(x∗, y∗)← −1

Algorithm 8: Procedure UpdateExterior

foreach (x, y) ∈ Lout(n) do

if φ(x∗, y∗) > 0, ∀(x∗, y∗) ∈ N4(x, y) then
remove (x, y) from Lout(n); φ(x, y)← 3
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B EM-IMM Parameter Estimation

The unknown parameters are denoted by Θ ≡ {Qi,R,Σi
0}. Our objective is

to estimate the parameters Θ and the hidden states S = {s0, ..., sK} based on
the measurements Z = {z−2, ..., zK}. We make the index of the measurement
sequence to start from −2 for the convenience of notation. The initial state s0

is obtained using the first three measurements {z−2, z−1, z0}.

The EM algorithm maximizes the complete-data log likelihood, defined by

logP (S,Z|Θ) =−
K

2
log |Qi| −

K

2
log |R| −

1

2
log |Σi

0|

−
1

2

K
∑

k=1

(zk −Hsk)
′R−1(zk −Hsk)

−
1

2

K
∑

k=1

(sk − Fisk−1)
′(Qi)−1(sk − Fisk−1) + constant, (B.1)

where |·| denotes matrix determinant. The maximization of logP (S,Z|Θ) with
respect to the unknown parameters Θ is a chicken-and-egg problem since the
system states S are also unknown. The EM algorithm solves this problem by
iterating between two steps: expectation (E) and maximization (M).

B.1 E Step

The E step finds the expected value of the complete-data log likelihood with
respect to the unknown states S, given the observed data Z and the current
parameter estimates Θold:

Q(Θ|Θold) = E
[

logP (S,Z,Θ|Z,Θold)
]

. (B.2)

This quantity depends on three expectations:

ŝk|K ≡ E
[

sk|Z,Θ
old)

]

(B.3)

Σk|K ≡ E
[

sks
′
k|Z,Θ

old)
]

(B.4)

Σk,k−1|K ≡ E
[

sks
′
k−1|Z,Θ

old)
]

(B.5)

Note that the estimates ŝk|K and Σ̂k|K differ from the ones computed by
the forward-time IMM filter in that they depend on past as well as future

observations. To obtain these estimates, the fixed-interval IMM smoother in
(Helmick et al., 1995) is utilized. The algorithm uses two IMM filters. One of
the filters propagates in the forward-time direction, and produces estimates ŝ

j
k

and Σ
j
k as given previously. The other filter propagates in the backward-time
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direction, and produces estimates ŝ
b,i
k , Σ

b,i
k , ŝ

b,i
k|k+1 and Σ

b,i
k|k+1. We refer the

reader to (Helmick et al., 1995) for details on the backward-time IMM filter.
The fixed-interval IMM smoother combines the forward and backward filtered
outputs to obtain smoothed estimates according to the following procedure.

Step 1: Compute combined estimates:

ŝ
ji
k|K = Σ

ji
k|K

[

(Σj
k)

−1ŝ
j
k + (Σb,i

k|k+1)
−1ŝ

b,i
k|k+1)

]

,

Σ
ji
k|K =

[

(Σj
k)

−1 + (Σb,i
k|k+1)

−1
]−1

,

Σ
ji
k+1,k|K =

[

(Σj
k+1,k|k)

−1 + (Σb,i
k+1,k|k+1)

−1
]−1

, (B.6)

with Σ
j
k+1,k|k = FjΣ

j
k, and Σ

b,i
k+1,k|k+1 = Σ

b,i
k+1[(F

i)−1]′.

Step 2: Compute model-conditioned smoothed estimates:

ŝ
j
k|K =

r
∑

i=1

ρ
i|j
k+1|K ŝ

ji
k|K ,

Σ
j
k|K =

r
∑

i=1

ρ
i|j
k+1|K

[

Σ
ji
k|K + (ŝji

k|K − ŝ
j
k|K)(ŝji

k|K − ŝ
j
k|K)′

]

,

Σ
j
k+1,k|K =

r
∑

i=1

ρ
i|j
k+1|K

[

Σ
ji
k+1,k|K + (ŝji

k+1|K − ŝ
j
k+1|K)(ŝji

k|K − ŝ
j
k|K)′

]

. (B.7)

The conditional probability ρ
i|j
k+1|K is obtained by

ρ
i|j
k+1|K = pjiλ

ji
k /γj, with γj =

r
∑

i=1

pjiλ
ji
k . (B.8)

The likelihood λji
k is given by

λji
k = N (ŝb,i

k|k+1 − ŝ
j
k; 0,Σ

b,i
k|k+1 + Σ

j
k), (B.9)

where N (·) denotes a multivariate normal distribution.

Step 3: Compute the overall smoothed estimates:

ŝk|K =
r

∑

j=1

ρs,j
k ŝ

j
k|K ,

Σk|K =
r

∑

j=1

ρs,j
k

[

Σ
j
k|K + (ŝj

k|K − ŝk|K)(ŝj
k|K − ŝk|K)′

]

,

Σk+1,k|K =
r

∑

j=1

ρs,j
k

[

Σ
j
k+1,k|K + (ŝj

k+1|K − ŝk+1|K)(ŝj
k|K − ŝk|K)′

]

. (B.10)
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The smoothed model probability ρs,j can be computed as

ρs,j
k =

γjρ
j
k

∑r
j=1 γjρ

j
k

, (B.11)

where ρj
k is the forward-time filtered model probability.

B.2 M Step

The M-step of the EM algorithm re-estimates the unknown parameters by
maximizing the expectation computed in the first step, i.e.,

Θnew = max
Θ

Q(Θ|Θold). (B.12)

By taking the partial derivatives of Q with respect to (Qi)−1 and R−1, and
setting the respective result to zero, we obtain

(Qi)new =
1

K

K
∑

k=1

[

Σk|K − FiΣk−1,k|K

−Σk,k−1|K(Fi)′ + FiΣk−1|K(Fi)′
]

, (B.13)

Rnew =
1

K

K
∑

k=1

(

zkz
′
k − 2Hŝk|Kz′k + HΣk|KH′

)

, (B.14)

(Σi
0)

new = Σ0|K . (B.15)

The expectation and maximization steps are computed repeatedly until the
relative absolute change of the expected log likelihood is below a threshold.
Each iteration is guaranteed to increase the log likelihood, and the algorithm
will converge to a local maximum of the log likelihood function.
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