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Abstract

We present several algorithms for cell image analysis in-
cluding microscopy image restoration, cell event detection
and cell tracking in a large population. The algorithms are
integrated into an automated system capable of quantify-
ing cell proliferation metrics in vitro in real-time. This of-
fers unique opportunities for biological applications such
as efficient cell behavior discovery in response to different
cell culturing conditions and adaptive experiment control.
We quantitatively evaluated our system’s performance on
16 microscopy image sequences with satisfactory accuracy
for biologists’ need. We have also developed a public web-
site compatible to the system’s local user interface, thereby
allowing biologists to conveniently check their experiment
progress online. The website will serve as a community re-
source that allows other research groups to upload their cell
images for analysis and comparison.

1. Introduction
Advances in optics and imaging systems have enabled

biologists to visualize a living specimen’s dynamic pro-
cesses by time-lapse microscopy images. However, the
image data recorded during even a single experiment may
consist of hundreds of objects over thousands of images,
which makes manual inspection a tedious and inaccurate
option. This paper addresses the need for computational
tools and community resources that can enable the quanti-
tative system-level biology automatically. The domain of
our current interests are cell image analysis algorithms in-
cluding microscopy image restoration, cell mitotic event de-
tection and cell tracking by data association, which are inte-
grated into an online automated system. Figure 1 shows one
of our system’s capabilities. In a stem cell manufacturing
experiment, the number of cells grew from 20+ to hundreds
in about 55 hours (Figure 1(a-b)). We detect and track each
individual cell’s movements in space and time, and gener-
ate corresponding lineage trees (i.e. mother-daughter rela-
tionship) to compute metrics for biologists to measure the
cell proliferation process. For example, Figure 1(c) shows
tracking trajectories of three cell families and Figure 1(d)

Figure 1. Generating cell lineage trees. (a) Beginning of the ex-
periment with 20+ cells; (b) End of the experiment (55 hours later)
with hundreds of cells; (c) Trajectories of three cell families shown
in space and time; (d) Lineage trees and performance evaluation
(thin black lines: three human annotated lineage trees; overlaid
thick red lines: correctly-tracked cells by our system).

shows their lineage trees compared to the human annotated
ones.

Related literature
As recently reviewed in [6, 14, 17], tracking and analyz-

ing cell movements are of particular interest to many living
cell experiments. There are three main categories of exist-
ing tracking methods: filtering-based sampling approaches,
model-based evolution approaches and detection-based as-
sociation approaches.

Particle filtering is a filtering-based approach widely
used for multiple object tracking. In [19], multiple mod-
els such as measurement models and dynamic models need
to be known before estimating the posterior distributions of
an object’s current states. Gating and hierarchy searching
techniques are used to reduce the large computational cost
introduced by Monte-Carlo sampling (103 particles are used
per object per frame). Human interaction or other initializa-
tion methods are required to define the prior distributions of
object states in the first frame.
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The idea of model-based tracking is to create and update
a model for each object to be tracked. For example, a cou-
pled mean-shift algorithm is developed to track migrating
cells in phase-contrast microscopy images [4], where hu-
man operators are asked to select cells to be tracked and
also initialize the object appearance models at the begin-
ning. Mean-shift algorithms are then performed on the pre-
processed images (thresholded, equalized and masked im-
ages). This method works well if the cell shape used to
define multiple mean-shift kernels is known and cells move
relatively slowly between consecutive frames. Another op-
tion of model-based approach is the active contour method
that is extensively researched ([5] and references therein).
Though the active contour method handles the cell shape
deformation well and uses object contours of the previous
frame as initializations in the current frame, reinitialization
is usually required if objects show large displacement be-
tween frames or new object appearing events happen.

The strategy of detection-based association approach is
to segment and locate objects first and then associate those
objects/tracklets (short accurate object trajectories) among
frames [6, 14]. Some popular segmentation methods em-
ployed in the previous cell-tracking systems include inten-
sity thresholding [1], gradient (edge) detection [7], morpho-
logical operations [8] and watershed algorithms [20]. How-
ever, due to intensity variations, image noise and artifacts
from the optical system (e.g. halo in the phase contrast mi-
croscopy images), intensity thresholding is usually error-
prone. Edge detection is more robust than thresholding, but
it does not work well on low-contrast images or flat cell
regions. Morphological operations only provide rough seg-
mentation and the watershed approach usually suffers from
image noise and tends to over-segment images.

Mitosis, or cell division, is one important phenomenon
we should consider in cell tracking systems. A series of
distinctive changes during mitosis (e.g. the changes of ob-
ject appearance and shape) encumbers model-based track-
ing methods. Indeed, accurate detection of mitosis events
can benefit frame-by-frame or tracklet-by-tracklet associ-
ation. Recently, several mitosis event detection algorithms
that are independent of tracking results have been proposed.
Li et al. [9] adopted a cascade Adaboost algorithm on vol-
umetric Haar-like features to detect mitosis events. The ex-
haustive search based on a sliding window scheme is com-
putationally expensive and volumetric Haar-like features
are not good at capturing long-term temporal dynamics. Liu
et al. [12] applied the Hidden Conditional Random Field
(HCRF) model to detect patch sequences containing mito-
sis. This work does not provide information on when mito-
sis is completed and daughter cells are born, which indicates
when a trajectory of a mother cell divides into two trajecto-
ries of its daughter cells. In addition, the overall approach is
computationally expensive due to its preconditioning step.

Based on detected cell candidates, linear program-
ming [1, 8] and min-cost flow [15] were applied to match
objects across frames. The frame-by-frame association ap-
proach works well only if objects are accurately detected in
each frame. However, cells often touch and partially over-
lap each other and form a cell cluster with blurry intercel-
lular boundaries. Such clusters cause difficulty in the above
association approaches, often resulting in loss of cell tracks
and confusion of cell identities.

Our work
To address the drawbacks of the previous approaches,

we introduce three algorithms for cell image analysis that
are integrated into an online automated system:

1. We present a microscopy image restoration and seg-
mentation method based on the specific microscopy imag-
ing model. A quadratic optimization function with sparse-
ness and smoothness regularizations is formulated to restore
the “authentic” microscopy images without artifacts such as
halo and shading. With artifacts removed, high quality seg-
mentation can be achieved by simply thresholding the re-
stored image.

2. We propose a three-step approach for mitosis detec-
tion: candidate patch sequence construction, feature extrac-
tion, and identification of mitosis occurrence and localiza-
tion of birth event (the time and location at which the two
daughter cells first appear and the boundary between them
is clearly shown). In the first step, the search space is re-
duced from the entire video volume to small-size candidate
patch sequences. In the second step, visual features from
each candidate patch are extracted based on the character-
istics of microscopy cell images. In the last step, we de-
termine whether each candidate patch sequence contains a
birth event and detect the spatial and temporal locations of
all birth events.

3. Based on the segmentation and mitosis detection re-
sults, we propose a cell-blob association approach tolerant
of missing cell detection, cell overlapping and dividing. The
tracking system is automatically initialized by the segmen-
tation algorithm and can handle objects coming into or leav-
ing the field of view.

2. Overview of Our System
Figure 2 shows an overview of the integrated system.

Researchers can upload cell images from their database to
our file server, capture microscopic images of living cells
in real time and upload them, or retrieve image analysis re-
sults to check their experiment progress. Once microscopy
images are uploaded to the file server, the computing clus-
ters run cell image analysis algorithms in parallel to process
images and output results to the file server. The file server
stores all image files and processed results (segmentation
mask, mitosis detection, tracking trajectories and cell met-



Figure 2. Overview of our system.

rics), which can be viewed in a local graphical user interface
(GUI) or through our website.

Our system supports online biological experiments and
we have successfully tested it worldwide. After biologists
started culturing cells in their lab overseas, microscopy
imaging system captured and uploaded the images to our
file server periodically. Our system processed the images
in real-time and provided corresponding metrics to biolo-
gists for adaptive experiment control. Biologists can check
their experiment progress conveniently (e.g. from a mobile
device with internet connection), without having to wait in
their lab for hours.

3. Algorithms and Performance Evaluation
In this section, we first describe the three cell image anal-

ysis algorithms in the integrated system and then quantita-
tively evaluate the system’s performance.

3.1. Microscopy Image Restoration

Based on the principle of detection-based tracking ap-
proach (i.e. first detect, then track), segmenting object can-
didates from the background is fundamental to the track-
ing system. Figure 3(a) shows a typical phase contrast im-
age where cells are surrounded by bright halos, some cell
structures (e.g. nuclei and cell membrane) consist of mul-
tiple dark regions, and cellular fluid inside the membrane
has similar intensity as the background. This presents a lot
of challenges to traditional image segmentation techniques.
Instead, we attack the segmentation problem by consider-
ing the unique characteristics of microscopy image forma-
tion process such as the halo artifacts of phase contrast im-
ages. Using the recently discovered microscopy imaging
model [21], we formulate a regularized quadratic cost func-
tion to restore the artifact-free microscopy images:

O(f) = ‖Hf − g‖2 +
ωlf

TLf + ωs‖Λsf‖1 + ωt(f − ft)
TΛt(f − ft) (1)

where f is the vectorized image to be restored such that
background pixels have uniform zero values and foreground

pixels have positive values, based on which simple thresh-
olding method can work well for the segmentation task. H
is the imaging model in a matrix format from [21], g is the
vectorized observed image. The first regularization term in
Eq. 1 is spatial smoothness where L is a Laplacian matrix
defining the spatial intensity similarity between neighbor-
ing pixels such as the one used in [11]. The second is a l1
sparsity term where Λs is a diagonal matrix penalizing large
f values. The last regularization term is to maintain the tem-
poral consistency between consecutive images where Λt is
a diagonal matrix defining the intensity similarity between
neighboring pixels in the temporal domain and ft is the re-
stored image in the previous frame. The optimal weights for
the three regularization terms (ωl, ωs, and ωt) are learned
from training images by grid-search.

The regularized objective function can be minimized us-
ing a nonnegative updating scheme [18]. Figure 3(b) shows
the restored image where a simple thresholding method is
enough to separate the cell pixels from background pixels.

Differential Interference Contrast (DIC), another popu-
lar microscopy imaging technique, displays a pseudo three-
dimensional shading effect and cell intensities are quite
similar to background pixels as shown in Figure 3(c). Simi-
larly, based on the DIC imaging model [10], we can restore
an image conducive to thresholding (Figure 3(d)).

3.2. Mitosis Detection

We propose a three-step mitosis detection approach:
patch sequences construction, feature extraction and birth
event location. We detect candidate patch sequences based
on intensity change, since cells typically exhibit increased
brightness during mitosis events (Figure 4(a)). More specif-
ically, after detecting small bright rectangular regions in
each image using thresholding and convolution, overlapped
regions are combined into one patch. Then, spatially-
overlapped patches across consecutive frames are collected
into a candidate patch sequence.

For each patch in candidate patch sequences, we com-
pute unique-scale gradient histograms as visual features.
These features are similar to SIFT [13] in that gradient his-



Figure 3. Microscopy image restoration. (a,b): Input and restored
phase contrast images; (c,d): Input and restored DIC images.

tograms are computed; however, we fixed the scale since
the distance between the microscope lens and cells are al-
most uniform. In addition, to obtain similar features regard-
less of a cell’s orientation, we duplicate patch sequences
in the training set by rotating all patches in the sequence
along several different orientations. This rotation invariance
scheme shows more reliable results compared to the origi-
nal SIFT rotation invariance scheme with the major axis.

After the first two steps, we will decide whether each
candidate patch sequence contains a birth event and in
which frame the birth event is located. For the first decision
task, we adopt the HCRF model [16]. HCRF model has an
advantage in that it can model temporal dynamics in patch
sequences containing different numbers of patches. For the
second decision task, we trained a version of Support Vec-
tor Machine (SVM) that outputs probabilities. For train-
ing, patches containing a manually annotated birth event
are used as positive samples and other patches in patch se-
quences that do not contain mitosis are negative samples.
For each patch sequence determined to include a mitosis
event, the SVM is applied and the patch with the highest
probability is decided to contain a birth event. Figure 4(b)
shows the mitosis detection results (yellow rings) of two cell
families by our mitosis detection algorithm. The cell branch
trajectories are well linked by applying the birth event infor-
mation in the following association approach.

Figure 4. Mitosis detection. (a) A patch sequence showing a cell’s
appearance change during a mitosis event; (b) Mitosis detection is
used in association-based tracking module (yellow rings: detected
mitosis events around tree bifurcations, red and green trees: two
well-tracked cell families viewed in the spatiotemporal space).

3.3. Cell Tracking by Association

The image segmentation algorithm segments blobs from
input images that can be individual cells or cell clusters
(overlapped cells), and the mitosis detection algorithm lo-
cates birth events where and when one cell divides into two
cells. Based on the outputs of these two algorithms, we
developed a cell-blob correspondence algorithm perform-
ing data association between the cells in the previous frame
and the blobs segmented in the current frame. In detail, the
association algorithm makes the following hypotheses with
corresponding likelihood for all possible cell actions (Fig-
ure 5(a)):

(1) one-to-one hypothesis: a cell migrates to a new posi-
tion:

p1→1(ci, bj) = e−
‖f(ci)−f(bj)‖

σ (2)

where ci represents the ith cell in the previous frame and
bj represents the jth blob in the current frame. f(·) com-
putes an object’s feature vector where different types of fea-
tures can be incorporated such as appearance histogram,
shape and motion history. σ is a free parameter to adjust
the distribution. The likelihood of a one-to-one hypothesis,
p1→1(ci, bj), is computed based on the distance between
two feature vectors. We apply a gating region to reduce the
size of one-to-one hypothesis set such that cell ci only looks
for its corresponding blob around its local area. When there
is no nearby blob in the current frame (missing detection
case), cell ci will search its corresponding blob in the next
several frames (i.e. within a sliding temporal window).

(2) one-to-none hypothesis: a cell exits from the field of
view:

p1→0(ci) = e−
d(ci)

λ (3)

where d(ci) computes the spatial distance between the cen-



troid of cell ci and the image boundary. λ is a free parameter
to adjust the distribution. Only cells near the image bound-
ary have one-to-none (exit) hypotheses.

(3) none-to-one hypothesis: a blob enters the field of
view:

p0→1(bj) = e−
d(bj)

λ (4)

Similar to one-to-none hypothesis, only blobs near the im-
age boundary have none-to-one (enter) hypothesis.

(4) one-to-two: a cell divides into two cells:

p1→2(ci, bj1 , bj2) = e−
‖f(ci)−f(bj1 ,bj2 )‖

σ (5)

Only cells near the spatiotemporal location of a birth event
have one-to-two (mitosis) hypothesis. To handle missing
blob detection or inaccurate birth event detection, we use a
sliding temporal window around the detected mitotic mo-
ment, i.e. a mother cell looks for its two daughter blobs
within several succeeding frames. To compute the feature
vector of two separated blobs, f(bj1 , bj2 ), we translate bj1
and bj2 towards each other until they overlap, and then ex-
tract the feature vector over the joint blob.

(5) many-to-one: multiple cells overlap:

pn→1(ci1 , . . . , cin , bj) = e−
‖f(ci1 ,...,cin )−f(bj)‖

σ (6)

When several cells are close to each other in the previ-
ous frame and a nearby large blob is detected in the cur-
rent frame, those cells have a many-to-one hypothesis. We
shift the multiple cells to form a joint cell to extract fea-
ture vector f(ci1 , . . . , cin). When tracking the overlapped
blob in the succeeding frames, we apply a contour-matching
method [2] to separate it into its member cells, thus the
cell identities are maintained. Figure 5(b) shows an exam-
ple of tracking overlapped cells with many-(cells)-to-one-
(blob) hypothesis where multiple cells partially overlap and
the blob contour of the resultant cluster is comprised of par-
tial contours of its member cells.

After computing the likelihood of all the M hypotheses
over N1 cells and N2 blobs, we get the M × 1 likelihood
vector p and formulate the following optimization problem

argmax
x

pTx, s.t. CTx ≤ 1 (7)

where x is a M × 1 binary vector, and xk = 1 means the
kth hypothesis is selected in the global optimal solution. C
is a M × (N1 + N2) matrix, each row of which denotes
which object IDs are involved in that hypothesis. The con-
straint CTx ≤ 1 guarantees that each object ID appears
in no more than one hypothesis in the optimal solution, i.e.
no conflict hypotheses in the solution. Figure 5(c) shows a
simple example with M = 8, N1 = 3 and N2 = 3. In the
optimal solution, blobs 4 and 5 will be assigned with new
cell IDs since they are newborn daughter cells of mother
cell 7, and blob 6 will have two member cells with inherent
cell ID 8 and 9.

Figure 5. Tracking by association. (a) Cell-blob hypotheses; (b)
Separate overlapped cells by matching partial contours during
many-to-one hypothesis; (c) An integer programming example
where the optimal solution is highlighted by red.

Figure 6. Sample images from four cell culture conditions. (a)
Control; (b) With FGF2 medicine; (c) With BMP2 medicine; (d)
With FGF2+BMP2 medicine.

3.4. Performance Evaluation

We recorded 16 image sequences under four different
cell culture conditions with sample images shown in Fig-
ure 6. The images are captured every 5 minutes and each
sequence consists of 1000 images with the resolution of



Figure 7. Lineage tree comparisons. (a) The red, green and blue trajectories that are human annotation of three cell families are overlaid
on the white trajectories from our system. (b) Lineage trees by human annotation; (c) Lineage trees from our system.

Track purity Target effectiveness
Li et al. [8] 0.65 0.70

Ours 0.93 0.82
Table 1. Comparison of our system with [8] on a sequence with all
cells annotated.

1392*1040 pixels. The total number of annotated cells in
the 16 sequences is 1358591.

Figure 7(a) shows an example of the computer-tracked
trajectories (white) compared to the human-annotated ones
(red, green and blue) in spatiotemporal space. Figure 7(b)
and (c) show the binary lineage trees by human and our
system, respectively. The tree comparison is a strict eval-
uation criterion. We compare not only the spatial distance
between human-annotated cell locations and computer-
tracked ones, but also the mother-daughter relationships be-
tween tree branches. Visually comparing Figure 7(b) and
(c), we would conclude that the two sets of lineage trees are
matched well overall. Though there is a missing cell detec-
tion and birth event detection on cell 1 in Figure 7(c), its
daughter cells are detected and tracked later, thus the sub-
lineage trees are recovered.

We use two quantitative criteria to assess the system per-
formance: track purity and target effectiveness [3]. The
track purity is defined as the number of track observations
(computer-generated) matched to the best target (human an-
notated) over the total number of track observations. It in-
dicates how many observations from a computer-generated
track are from the correct target. Similarly, we define target
effectiveness as how well targets are followed by tracks.

As shown in Table 1, our system achieves higher track
purity and target effectiveness than the state-of-the-art
method in [8] on the full-annotated sequence (Exp1 un-
der BMP2 condition). Table 2 shows the target effective-

1Initially, we planned to annotate every cell in each image for all the
sequences. However, it took a senior PhD student from the Bioengineering
department one month to annotate one sequence from the first image to
the 780th image. He could not continue beyond that because cells are
highly confluent after then. Since it is too time-consuming to annotate the
migration and mitosis histories for all cells by human, for all the other 15
sequences, we randomly pick three cells at the beginning of each sequence
and annotate the three cells’ family trees through the 780th image.

Cond Alg Exp1 Exp2 Exp3 Exp4 Avg

Control [8] 0.69 0.70 0.76 0.65 0.70
Ours 0.84 0.85 0.82 0.81 0.83

FGF2 [8] 0.56 0.67 0.57 0.48 0.57
Ours 0.62 0.66 0.67 0.60 0.64

BMP2 [8] 0.70 0.71 0.61 0.55 0.63
Ours 0.82 0.88 0.72 0.77 0.80

FGF2+ [8] 0.68 0.68 0.70 0.78 0.71
BMP2 Ours 0.80 0.76 0.78 0.82 0.79

Table 2. The target effectiveness comparison between our system
and [8] on 16 experiments of four cell culturing conditions.

ness comparison on all the 16 sequences2. On average,
we achieve around 80% target effectiveness of three cul-
ture conditions except the FGF2 case, compared to 66%
of [8]. When computing the target effectiveness, a tar-
get in the lineage tree is considered as not being tracked
if: the object centroid from the track observation deviates
from the human annotated centroid larger than T pixels (e.g.
T = 10); there is no corresponding track observation for a
period larger than the sliding temporal window (accumu-
lated missing detection); or the cell ID of the track obser-
vation switches to another track (wrong lineage tree rela-
tionship). In the FGF2 culturing condition (Figure 6(b)),
cells deform largely with irregular shape and heavily over-
lap each other, which makes the tasks of segmentation, mi-
tosis detection and tracking harder. The future work to fur-
ther improve our system’s performance will include trajec-
tory pruning and cell-blob affinity model learning.

4. Local GUI and Website
To handle the heavy computation load of many biologi-

cal experiments at the same time, we use a cloud computing
cluster and a virtual machine manager. As shown in Fig-
ure 2, the cell image analysis algorithms run on the com-
puting clusters and output results onto a file server. To vi-
sualize the system’s output, we implement a local GUI in
MATLAB and utilize it in two ways: one is for biologists to

2We are not able to compute track purity for the 15 partially-annotated
sequences because it needs all cells to be annotated while we have three
cell families annotated per sequence so far.



Figure 8. (a): Local stand-alone GUI; (b): Public website.

check their experiment progress, and the other is for algo-
rithm developers to debug their programs. The local GUI is
synchronized with the file server. Once a new biology ex-
periment is started and images are captured, uploaded and
processed, all the results (segmentation, mitosis detection,
tracking and cell metrics) can be visualized in the GUI. A
screen shot of the GUI is shown in Figure 8(a). In the main
window, segmented cells are highlighted together with tra-
jectories shown on the input image. The trajectories are use-
ful to observe how cells behave and can be displayed in 3D.
Various cell metrics computed from cell lineage trees (e.g.
the number of cells, division time, growth fraction, etc.) can
be visualized in a pop-up window in real time. The GUI
also provides an offline mode during an online experiment
so that a user can review the results in the previous frames.

Compatible to the local GUI, we also developed a
web application. The web interface aims to provide a
lightweight application that allows biologists to keep up
with their experiments from anywhere (i.e. biologists can
start, stop, and monitor their experiments from the inter-
net.) Figure 8(b) shows a screen shot of the website where
biologists can view the original microscope images, track-
ing results, and graphs of important cell metrics. The track-
ing results are saved as XML files and they are dynami-
cally plotted onto the original microscope images by PHP.
Through a combination of PHP and Javascript, users can
view the result image sequence as a movie.

5. Biological Applications
We use two examples here to demonstrate how our cell

image analysis system can facilitate applications in biology
research.

5.1. Wound Healing Assays
The wound healing assay in vitro is widely used for re-

search and discovery in biology and medicine. Figure 9(a)
shows an example where cells on the edges of an artificial
wound migrate toward the wound area. Our cell tracking
system can track individual cells during the process and
provide detailed spatiotemporal measurements of cell be-
haviors. For example, we can compute the decreasing size
of the middle wound area based on tracking results (Fig-
ure 9(a)) and cell densities along image columns at each

Figure 9. Wound healing assay. (a) Cells migrate to the middle
wound area; (b) Cell densities along each image column; (c) Cell
density map over time; (d) Cell migration paths (left and right
groups); (e) Distributions of cell migration directions in response
to different culturing conditions.

moment (Figure 9(b)). Figure 9(c) shows the jet map of cell
density changes over time, each row of which represents
the density curve values of Figure 9(b). Aligning all the
cell migration paths with the same origin (white rectangles
in Figure 9(d)), we can observe two clusters of movements
where the left part of cells move rightward and vice versa.
The above measurements are important for studying the in-
fluence of different culture conditions on the healing pro-
cess. As shown in Figure 9(e), we plot the distribution of
cell migration directions in rose diagrams. As the amount
of medicine (Latrunculin B) increases, the bovine aortic en-
dothelial cells tend to migrate more diversely.

5.2. Stem Cell Manufacturing
Stem cell research promises to revolutionize medicine.

To meet the demand of clinical applications, a sufficient
number of cells are needed during medical treatment (Fig-
ure 10(a)). Thus, cell culture conditions must maintain
“stemness” for cell production, i.e., stem cells keep divid-
ing without differentiating into fixed cell types (e.g. muscle,
blood or skin cells). Quantifying metrics of stemness re-
quires measuring the spatiotemporal histories of each cell’s
fate within a population. Given cell images captured in
bio-labs, our system can track each individual cell’s his-
tory (Figure 10(b)) and provide the full lineage trees (Fig-
ure 10(c)) to compute the metrics over time (e.g. cell pop-



Figure 10. Stem cell manufacturing. (a) For clinical applications,
enough numbers of stem cells are needed before medical treat-
ment; (b) Tracked cell trajectories from captured image sequences;
(c) The full cell lineage trees.

ulation, cell cycle, cell mitotic rate, tree synchrony etc.)
Using these metrics, biologists can quantitatively and effi-
ciently characterize cell behaviors in vitro in response to cell
culturing conditions for maximizing cell expansion, even
adaptively monitor and control in vivo medical therapy in
the future.

6. Conclusion
We presented three cell image analysis algorithms: mi-

croscopy image restoration, mitosis event detection and
error-tolerant data association, which are integrated into
an online automated system. The system’s performance is
quantitatively evaluated on 16 sequences with promising ac-
curacy. A public website compatible to a local GUI is set
up as a community resource and run on a cloud computing
cluster. Other research groups are welcome to upload their
cell images for processing and comparison. We demon-
strated the system’s value on biology research using two
biological applications: wound healing assay and stem cell
manufacturing.
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