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Abstract— Automated visual-tracking of cell populations in
vitro using phase contrast time-lapse microscopy is vital for
quantitative, systematic and high-throughput measurements fo
cell behaviors. These measurements include the spatiotemporal
quantification of migration, mitosis, apoptosis, and cell lineage.
This paper presents an automated cell tracking system that
can simultaneously track and analyze thousands of cells. The
system performs tracking by cycling through frame-by-frame
track compilation and spatiotemporal track linking, combining
the power of two tracking paradigms. We applied the system
to a range of cell populations including adult stem cells. The
system achieved tracking accuracies in the range of 85.9%-—
92.5%, outperforming previous work by up to 9%. The proposed
tracking methodology is valuable for tissue engineering, stem cell Fig. 1. Examples of phase contrast microscopy images of cell popu-

research, drug discovery and development, and related areas. lations. (a) shows MG-63 human osteosarcoma cells; and (b) shows
human amnion epithelial (AE) cell population. The images are contrast-

enhanced for the purpose of display and publication.

I. INTRODUCTION

Automated tracking of cell populations vitro in time- each frame, precluding the possibility for retrospectivere
lapse microscopy images [6], [14], [18] can provide highdetection and correction. Thirdly, the Kalman filter used fo
throughput spatiotemporal measurements of a range of&ell Bynamics filtering is bound to use one dynamics model only,
haviors, includingnigration (translocation)mitosis(division), which can be problematic as the dynamics of cells may vary
apoptosigdeath), andineage(parent-daughter relations). Thisfrequently with time.
capability is valuable to research in genomics, proteomics We propose an improved tracking system to address the
stem cell biology, and tissue engineering. above issues. Specifically, we divide the track arbitratbo i

Traditional approaches for tracking includeacking by two submodulestrack compilerandtrack linker. Track com-
detection and traCking by mOdel'eV()lUtiqneaCh with its pi|er operates in a frame-by-frame manner and produces
advantages and disadvantages. Recently, efforts were maglermediate tracking results calledlack segments Track
to combine the strengths of both approaches and mitigatifgker oversees the entire tracking history and estatdigimal
against their weaknesses [12]. The solution was to integrakll trajectories and lineages only when enough infornmatio
four collaborative modules, including: Tell detector which is available. We also adopt th'eteracting mu|tip|e models
detects and labels candidate cell regions in the input imag@vim) filter [4], which allows multiple dynamics models in
2) cell tracker, which propagates cell regions and identitieparallel, and was shown to be more biologically relevanntha
across frames; 3jlynamics filter which performs prediction g Kalman filter [8]. We focus on reliable long-term trackirfy o
and filtering of the cell motion dynamics using a Kalmagel| centroid locations and lineages. Accurate segmenmtatf

filter; and 4)track arbitrator, which manages the tracking taskcell boundaries is a plus, but not the emphasis of this paper.
by incorporating newly-entered cells, removing depadedd

cells, establishing cell lineages, and recovering lostkisa Il. METHODS
The system can simultaneously track thousands of livinkg cel

imaged with phase-contrast microscopy in realtime [12]. . ) . .
However, several limitations are inherent in the aforeme ggk ?e -r:]heenttsraj'l'er?;osrys?;n?r;ess%ecl:a;gsslyeggﬁsclztll ?:a:(ugéplfne
tioned tracking system. First, all of its modules operate inh. ar - 'he sy . . 9
L with a unique positive-integer label. We identify each cell
a frame-by-frame manner. Hence, only very limited spa- . o
. . . . . .. using the label of its first track segment. Let 0, ..., K be

tiotemporal context is considered, hindering the capabiti : : X ;

: . the frame index. The cell regions in an image frafpér, y)
resolving complete or long term occlusions. Secondly, the

track arbitrator module makes immediate, hard decisions '€ represented usmg a. region Iapelmg functiop(z, ).
hereinyy(x,y) = n if pixel (x,y) is part of celln, and

Corresponding author: Kang Li, email: kangl@cmu.edu. Vi (z,y) = 0 if pixel (z,y) belongs to the background. To

The proposed tracking system has five major modules



—>| Cell Detector {——Cell Candidates Final Tracks
I h
c S‘caj”t Updated
andidates : Past
Histograms
. y v 7/ :
»| Cell Tracker Propagated ->| Track Compiler I—» —»| Track Linker >
| Cells 1
nput 7 Y |
Predicted Dynamics
4 Current "
! - Corrected Dynamics ) B
| Dynamics Filter [¢ g cs/measurements Trajectory Segments

Fig. 2. System Overview

initialize tracking, the system generates initial celldibg A. Interacting Multiple Models Dynamics Filter
Yo(z,y) by running the cell detector on the first frame

The mechanism underlying cell locomotion involves a
Iy(x,y). For each subsequent franig(z, y): ying

complicated set of factors. Mathematical modeling of this

Step 1: The cell detector classifies the image pixels into celféchanism relies on the solution of an inverse problem [2],
(C) and background (B) regions by a combined use of mdihich is, unfortunately, ill-posed given limited image aato
phorlogical rolling-ball filtering [17] and a Bayesian céifger reach a realistic model of cell dynamics for the purpose of
based on estimated cell and background color histograrifgcking, several simplifying assumptions must be made. Ou
The histograms are initially learned off-line and increatly ~@ssumptions include: 1) the cell shape can be approximated b
updated on-the-fly using the tracking result as feedbacl. TAD €llipse at appropriate scales of observation, which en b
output is a binary map of cell regions, denotgdz, y). Each parameterl_zed by its cgntrmd and a covariance matrix; ) th
connected foreground componentdp(z, y) is considered as cell centroid translocation and intensity change are gwatr
a cell candidatein framek. by two independent dynamical processes; and 3) the dynamica

processes governing different cells are independent. eThes

Step 2: The cell tracker propagates the cell region labelingeemingly-restrictive assumptions allow us to employestat
Yr—1(x,y) from framek — 1 to framek. We use a fast level space dynamical filtering to estimate unknown cell states fr
set algorithm proposed in [16] to segment cell regions amgisy measurements in real-time. With the collected streng
to propagate the corresponding cell labels. We first iiiah  of multiple modules and spatiotemporal inference, this ap-
level set functionpy,(z, y) usingyx—1(x,y). Theng andy are  proach allows us to achieve satisfactory tracking perforea
evolved together to minimize an “energy” functional thazo at realistic computational overhead.
bines a region-competition term [19], a geodesic edge t&im [ e define the state of each cell in frarhéo consist of two
and a dynamics term based on the cell dynamics predicteddihcomponents: a (centroid) motion stafeand an intensity
the dynamics filter. To prevent contours that represenedifft states!. The motion state is defined as a concatenation of
cells from merging, we incorporate topological constminthe cell centroid coordinates in the last three frames:=
to the level set evolution. The output is the propagated C%BkyykyIk—l,yk—lyxk—27yk—2)T1 where the superscripl’
labeling for framek, denotedy;; (z, y). denotes matrix transposition. Analogously, the intenstite

) . is a concatenation of the mean cell intensities in the lasgth
Step 3: The track compiler compares the output of th ST S . T . .
fames, i.e.s;, = (g, ik—1,ik—2)" . The corresponding motion

cell detector and cell tracker, and take one of the followin : :
L dr%[eas:urement vecter! and intensity measurement vectdr
actions: to create a new or daughter track segment, to upda

o . : co%sist of the measured cell centroid coordinates and mean
an existing track, or to terminate a track. Meanwhile, thé L . .

. i . . intensity in framek, respectively. In the following text, we
dynamics filterupdates the cell dynamics state in frarhe focus on the dynamical filtering of cell centroid motion. A
and predicts its state for frame + 1. The output includes Y 9 i

. similar discussion applies to the filtering of cell interest
the track segments, an updateq region labelingr, y), and For brevity, we will omit the superscript€) and I, on the
updated cell and background histograms.

state and measurement vectors.

Step 4: The track linker examines all track segments up to Suppose cellular motion consists of a finite number of
framek, and detects whether two or more track segments meypdes, each of which can be described by a linear state-space
correspond to one cell. It attempts to link track segments imodel with additive Gaussian noise:
the spatiotemporal image volume, and to form more complete ; ;
cell trajectories. The updated cell trajectories are feckhia sk = F'sp1+ Vi1, (1)
the track compiler for subsequent tracking in frame- 1. zr = Hsy, + wy. (2)

The following sections elaborate on the dynamics filteHere, matrixF? is the state transition matrix of modeélc
track compiler, and track linker. We refer readers to [123] fo{1,...,r}, wherer is the number of modeldH is the mea-
details on the other modules. surement matrix that relates states to measuremefts. and



wi are the process and measurement noise vectors, whichfre..,r}). Inspired by [8], we define three models of cell

uncorrelated zero-mean Gaussian processes with covasiartynamics: random walk, first-order, and second-order tinea

Q! and R, respectively. The determination of these modeixtrapolation. They represent three typical modes of kzllu

parameters will be discussed in the next section. motion: Brownian motion, migration with constant speed,
The interacting multiple models (IMM) filter [4] operatesand migration with constant acceleration. The correspandi

several Kalman filters in parallel. Each filter is matched to system matrices are:

distinct mode of target motion. A finite state Markov chain

governs the transition between models, with probabitity T 0 O 2 -1 0
of switching from modeli to modelj in successive frames. Fl=|I1 o0 o0/|,F>=|1 o0 o],
The (forward-time) filtering recursion consists of two sag 0TI o o I o
prediction and correction r 31 —31 I
Pre.dlct|on:‘Start|ng fromr w.elght_Sp;ﬁl, statess; _, and FF=|1 0 o|, H=[100], (8
covariance®,_, from the previous iteration, we compute the o I o
mixed initial condition: -
§70 =Y P s (3) wherel is an2 x 2 identity matrix, and0 denotes & x 2
i zero matrix. We chose the transition probabilitiesas =

ng;l _ ZPQQ {P2_1 n (éfg_l _ §2{ ) (.“)T] . @ 1/3 (Vi,j € {1,2,3}), allowing equally probable switching
; between any two models.
ilj ; ; ; ; With these parameters set, we can estimate the remaining
where p”" = pijPh1/Prp—1 Prig—1 = 2iPiiPk-1 @ parametersd’ and R from off-line training sequences using
(...) denotes a_replication of the previous term. The_se_ are ingHL expectation-maximization (EM) algorithm. With the un-
to » Kalman flltelrs to compute the state pl’edICtlégk71 known parameters denoted I = {Q’, R}, our objective
and covarianceP; , ,. The combined state and covariancés to estimate the paramete® and the hidden stateS =

predictions can be determined by: {so,...,sk} based on the measuremef@s= {z_»,...,zx }.
. i The index of the measurement sequence starts fron
Sklk—1 = Zpk\k—lsk\k—l’ ®) purely for the convenience of notation. We use the first three
T . . measurement$z_»,z_1,z} to obtain the initial state.
Pi-1= D Phjps {Pim_l + (Skjp_1 — Sp—1) (- )T] : The EM algorithm maximizes the complete-data log likeli-
j hood, defined by
(6)
These are fed to the cell tracker to guide the level set eonlut logP(S,Z|®) =
in frame k [12]. K13 K ]
Correction: Given the predicted states, covariances, and - ——log|R| - 510g|QZ|

measurement,. (Fig. 2), we use the Kalman filters to obtain
the updated statg&] and covariancé;.. The likelihood that -
modelj is activated in frame: is

(Zk - HSk)TR_l(Zk — HSk)

| —
M= |+

>
Il
—

(s — Fisp1)T(Q") (s, — Fisp_1)

[\3")—‘
] >

N = exp -5 80t erdens], )

E

—

where yi = (21 — Zpk—1) is the innovation of Kalman + constant, 9)
filter j, and S, is the associated covariance. Then, the com-
bined states;, and covariancé, estimates can be computedyhere|-| denotes matrix determinant. Note that to obtain Eq.
by Equations (5) and (6), withp;,, , replaced byp; = (9), we utilized the fact that the initial error covariankt
oL N Phin1Mb): equals the Kronecker product of a«3 identity matrix and

o initialize the IMM filter, the system tracks each cellR, and hencdog |Py| = 3log |R/|.
without dynamical filtering in the first three frames that it The maximization oflog P(S,Z|®) with respect to the
appears. It uses the concatenation of measurements in th@senown paramete® is a chicken-and-egg problem since the
frames as the initial cell stat&, and sets the initial error system state§ are also unknown. The EM algorithm solves
covariancesP;, (for all i) to be the Kronecker product of this problem by iterating between two steps: expectation
a 3x3 identity matrix andR. The initial model weightsy (E) step and amaximization(M) step.
are taken ad/r, indicating complete uncertainty as to which 1) E Step: The E step finds the expected value of the
model is initially correct. complete-data log likelihood with respect to the unknown

statesS, given the observed dafé and the current parameter

B. Maximum-Likelihood Parameter Estimation for IMM estimate®°!, i.e.,:

The efficacy of the IMM filter hinges on the paramet#¥s
H, Q’, R, and the model transition probabilities; (i,; € Q(0|0°") = E [log P(S,Z,0|Z,0°Y)].  (10)



This quantity depends on three expectations: The smoothed model probability*” can be computed as

Skic = E [s]Z,0°9)] (12) i — ik (19)
Pk = E [sist |2, 0] (12) SV
— T old .
Pri—x = E [sis; 1|2, 079)] (13) where ), is the forward-time filtered model probability.

Note that the estimates, and Py, differ from the ones  2) M Step: The M-step of the EM algorithm re-estimates
computed by the forward-time IMM filter in that they dependne unknown parameters by maximizing the expectation we
on past as well afuture observations. To obtain these esticomputed in the first step, i.e.,

mates we utilize the fixed-interyal IMM smoother pr_oposed O™ = max Q(©]©°9).

by Helmick et al [9]. The algorithm uses two IMM filters. ©

One of the filters propagates in the forward-time directamg By taking the partial derivatives @ with respect tqQ*)

produces estimate, and Py, as given previously. The otherandR !, and setting the respective result to zero, we obtain
filter propagates in the backward-time direction, and pcegu

(20)

estimatess;”’, Py, 8 andPY’ . We refer the reader 1 :
o ER 0 Sk Kkt 1 \ iew — = NP — P,
to [9] for details on the backward.time IMM fiter. The IMM (&) K kz_:l [Piix k=1 kK
smoother combines the forward and backward filtered outputs - T i T
to obtain smoothed estimates following the procedure helow = Prpoai (F) +FPyx (F)], (1)
Step 1:Compute combined estimates: 1 & T . T T
) ) o N g R™Y = (zrzi — 2H8 2y, + HP H') .
Sl = Pl [(PD 718l + (L) '8k 0]

1
i1 iy—1 b,i —1
ch\[( = [(Pi) + (Pk\k+1) } )
—1
ji j 1 byi -1
Pk = [(Piﬂ,kw) + (P ki) } , (14)

. j ‘1] b,i _ pbyi i\ —
with Py, = F/Py andPy, ) = Pt [(F9) 7T

Step 2:Compute model-conditioned smoothed estimates:

.
aJ ilj aJt
Skix = E :'uk-i-l\KSk\K’
=1
T
i N~ i gl g T
Pl =D Mk [PMK + G = Sy () } )
i=1

r
J _ il ji
Priinix = E :MkJrl\K [Pk+17k|K
i=1

+ (égjﬂu( - éi+1\K)(éﬁK - éi\K)T} : (15)
The conditional probabilitwﬂilm is obtained by
NgiuK = DA} /75, With 5 = ipji)\f:- (16)
1=1
The likelihood X}’ is given by
N = NG — 810, PY L + P, (17)

where N (-) denotes a multivariate normal distribution.
Step 3:Compute the overall smoothed estimates:

,
& _ s, Jad
Sk|K = § :Mk Skix>
=1
T

Jj=1

T
_ 8,J J
Ppiikk = § :/‘k {Pk—&-l,le
=1

+ (§£+1|K - ék-HIK)(éiu( - élc|K)T} - (18)

(22)

The expectation and maximization steps are computed re-
peatedly until the relative absolute change of the expdoigd
likelihood is below a threshold. Each iteration is guaradte
to increase the log likelihood, and the algorithm will corges
to a local maximum of the log likelihood function.

As an possible enhancement to the above approach, we
can also treat the transition probabilities as unknowns and
estimate them online using historical tracking data [70]{1
This approach needs further experimental validation ard wi
be our future work. In addition, while the EM algorithm
permits the estimation &¢ andH from training data as well,
the resulting matrices may be arbitrary and hard to intérpre
With predefined system matrices, we gain additional insaght
to identifying the typical motion mode of each cell. Thatig
can identify whether the motion of a cell is predominated by
random walk, migration with constant speed, or accelematio
based on the model weight§ output by the IMM filter.

C. Track Compilation

The track compiler coordinates cell detector, cell trached
motion filter to produce track segments. We Qég to denote
the set of labels of all track segments created up to frame
A track segment isactive in frame k if it was successfully
tracked in frame: — 1, otherwise it becomeimactive Let
denote the background region, afig denote the cell region
with labeln. An outline of the track compilation algorithm is
shown in Algorithm 1.

The compiler first compares the output of the cell detector
and cell tracker(y, (z, y) andy;(z,y). Each cell candidate in
Cr(z,y) that does not overlap with any propagated cell region
in ¢} (z,y) is considered aewcell. A new track segment will
be initialized, andy; (z,y) will be updated accordingly.

Next, the algorithm scans through all active track segments
and deactivates track segments whose labels are not found
in the propagated region labeling;(z,y). A track segment
whose corresponding propagated cell region contains aray o



Fig. 3. Visualization of tracking results of AE cells in the subregion used for quantitative validation. Left: original image. Right: the image with cell
trajectories overlaid. Red rectangles indicate cells that were detected to be mitotic in the past 7" = 10 frames.

Algorithm 1: TrackCompilation based on measurements.of
Qo — {(z,y) |} (x,y) = 0} UpdateTrack(n, k,_w) u_pdate_s the traclg segment using
1 foreach cell candidatew C ¢, do the features of regiomw, including centroid location, mean
| if wC Qo then AddTrackn,e., k, w) intensity, area, and eccentricity. We feed the centroid and
> foreach active trackn € Nj_; do mean inter_1$ity to the motion filter to obtain a filtered state
Q, — {(z,9) Vi (z,y) = n} of cgll n in frame k. We use the last thr'ee fe:‘atures to
3 if 0, = @ then DeactivateTrackn) cla_ssﬁy a cell as norrr_1a|, mitotic, or apoptotic, using esar
4 else ifIsDivided2,,) then ne!ghbor matching wlth Mahe_xlanobls distance to a set of
if IsMitotic(n, k) then training samples obtained off-line.
foreach connected component c ©,, do AddDaughterT_rack(nda‘ughter,n, k,w) creates a Qaughter
| AddDaughterTrackiaqughter, 1, k, @) track of celln with a unique labelgqughier, and fills the

regionw with ngqugnter. The state of the daughter cell will be
computed based on the measured centroid location and mean
intensity ofw, and the predicted state of ceill
foreach connected component 2, \ w* SelectBestMatclin, k, €2,,) sglects componerw € Q.n
that best matches the dynamics of celli.e., the one which

do AddTracKn,c.w, k, w) T . X L . :
- maximizes the innovation likelihood given by Equation (7)
6 | elseUpdateTrackn, k,(2,) among all dynamic models.

IsDivided(€2,,) returnstrue if region ©, has multiple
connected components, and the minimum distance between

. . . any two points in different components is greater than agbres
connected component will be updated directly. If a cell oagi thresholdD. Otherwise, it returns al se.

consists of more than one well-separated connected CompofsMitotic (n. k) determines if celln is mitotic during the

nents, the track compiler will judge between two possiletit ’

1) the cell divided into daughter cells; or 2) one or more cRaStT frames.

these components are from occluded cells or close-by newly-

entered cells. The algorithm will either create daughtecks D. Track Linking

or continue tracking using the component that best matchesrhe track linker detects potential problems among all track

the cell trajectory, depending on whether the cell is presfp  segments up to framie based on two physical constraints: 1)

detected to be mitotic. a cell does not vanish unless it leaves the field-of-views die
Details of several key operations are as follow. and releases into the media, or is occluded; and 2) a cell does
AddTrack (w, nnew, k) Creates a new track segment labeledot appear unless it enters from outside, divides from amoth

Nnew; fills region w with n,.,; and initializes the cell state cell, or comes out of occlusion. The linker attempts to adrre

else
5 w* «SelectBestMatdh, k, §2,,)
UpdateTrackn, k, w*)




Fig. 4. Tracking AE cells through occlusion. Top row: The new system correcly tracked cell 116, which was completely occluded by cell 47 and
reappeared later. Bottom row: Incorrect result was produced by the previous system, where cell 116 switched with cell 47 and was lost eventually.
The numbers at the top-right corner are frame indices. The trailing curves represent cell trajectories. Different colors represent different cell lineages.

violations of these constraints by linking track segments i is the maximum innovation likelihood of track; on the
complete cell trajectories using spatiotemporal context. measurement of track; in framek; (Eq. 7). Intuitively,w; ¢
Algorithm 2 outlines the track linking algorithm. Wherein,indicates how likely track:; is a continuation of,; based on
Niest = {m|l = 1,...,L} denotes the label set of trackthe dynamics ofy;.
segments that end before franke and Nigung = {ns|f = Next, we compute a maximum-likelihood matching between
1,..., F'} denotes the label set of track segments that start aftesicksn; andny. The approach we reported previously [11]
frame 0. Most operations in the algorithm are self-explanat only considered one-to-one matches. Hence, it could not
One vital step is the matching between lost and appearekl traandle the case where a cell is lost track during a mitosi$, an

segmentsMatchTracks(Line 5). whose daughter cells are re-detected in later frames. Tdidnan
this case, we propose an improved algorithm that considers
Algorithm 2: TrackLinking both one-to-one and one-to-two matches. The algorithm rely
Niost. Niound — @ on two inputs: and x (L + F') constraint matrixC and an
1 foreach track n € N, do H x 1 likelihood vectord, whereH is the total number of
2 if IsShortn, k) then DeleteTrackn) one-Fo-one and one-to-two matching hypotheses. We canstru
3 | else if LostinFieldn, k) then Add n to Niest matrix C and vectord as follows.
4 | else if FoundInFieldn, k) then Add n to Ntoung For each af@‘”lv”ﬂ in G, we append a NEW row © and
5 MatchTrackéNiost, Niound) a corresponding new elementdo Let h be the index of this

foreach n; € Nips do new row. We set(h) = w; ¢, and

6 if IsMatche(ﬂnl,nf € Ntoundg) then ) 1, fi=lori=L+f,
| LinkTrackgn,, ) Ch, 1) = { 0, otherwise
7 else ifIsMatchedn;; ny,,ns, € Nioung) then . )
| LinkTrackgn;;ny, ,ny, For each noden; that is connected to multiple nodes
L ng, o ,ny, € Niund (m > 2), we enumerate all possible

one-to-two matchings, e.gy — (ny,,ny,), n — (ng,, ny,),
and so on. For each of these hypotheses;say (ny,,ny,),
we append a new row with index to C and a corresponding
new element tal. We setd (%) to be the maximum innovation
likelihood of trackn; on the spatiotemporal average of the
flarting points of tracks.;, andny,, and

In MatchTracks we first create a bipartite grapghi, whose
nodes correspond to the labels¥,s; and Nyoung. FOr each
node pair(n;, ny), we create an argn;, ny) between nodey;
and noden; if the last centroid locatior{x;, y;, k;) of track
n, IS within a spatiotemporal double cone centered at the fi
centroid location(z k) of trackn;, i.e., TP -

nzyr,yy, ky) f C(h’,i):{ (1)7 gt;(e_rv\llisze_L+f1,orz_L+f2,
\/(ffl —xy)?+ (y —ys)? < |k — kg|R+ Ro, and ’
ki — ks| < D/2, With C andd constructed, the matching problem reduces
- to selecting a subset of rows @ such that the sum of cor-
where D, R and R, are user-defined parameters. Each aresponding elements id is maximized, under the constraint

(ni,ny) is assigned a weight;y = AJ%L (ny), which that no two rows share common nonzero entries. This can be




posed as the following integer programming problem: that the cell is visible. The operator also manually idesifi
maxdx, st CTx <1, (23) all mitosis events. We compared the tracking results.preduc
x by the current and the previous systems, as shown in Table I.

wherel is a H x 1 vector of onesx is a H x 1 binary vector

to be solved for, withx(h) = 1 if row h is selected in the
solution, orx(h) = 0 otherwise. While integer programming [z
problems are in general NP-hard, the problem given in Eq. (2 S
can be solved exactly using linear programming. This is due
the fact that the constraint matr is totally unimodulat, and
the right-hand sides of the constraints are all integergadh
if the above two conditions are satisfied, a linear programgmi
problem will always have an integer-valued solution [15]. | §
practice, we use the open-source software packasve[3]
to solve the above integer programming problem. Note that§
similar integer programming approach was used by Al-Kofalge
et al [1] for inter-frame cell matching. '

Fig. 5. Automatic versus manual detection of C3H10T1/2 stem cell

populations in response to inkjet-printed patterns of HB-EGF growth

Il. EXPERIMENTS AND RESULTS factor. The cells are seeded near the bottom of the image. Yellow rect-

We quantitatively analyzed the performance of our systesngles indicate the locations of grow factor patterns. The concentration

: . istributions of the patterns are (from left to right, bottom to top): uniform,

on two iImage sequences (A and_ B) of MG-63 human Ogigh-to-low, and low-to-high. The thick yellow lines indicate the migration
teosarcoma cells used previously in [12], and two sequengégst defined as the 90th percentile boundary of the cell population.

(C and D) of proprietary amnion epithelial (AE) stem cells.
Examples of phase-contrast microscopy images of these cellye yisually compared the current tracking results with

lines are shown in Fig. 1. _ _ ___ those produced by the previous system [12] for more than 30
Sequences A and Bvere acquired with a 12-bit Qimagingseqyences of AE stem cells. The new system showed superior
Retiga EXi Fast 1394 CCD camera mounted on a Zeig§nstness in handling long-term occlusion and against cel
Axiovert 135 TV microscope, at an interval of 4 minutes/f@Myeatection error. Fig. 4 shows an example where cell 116 is
for 10 hours. Each sequence consists of 150 frames, Wil ded by cell 47 in frame 36 and reappeared in frame 46.
512x512 pixels/frame, and 1,8m/pixel at 4.9x magnlflc_atlon. The new system (top row) correctly recovered the trajectry
The cells were seeded randomly on a polystyrene dish.  ¢)| 116 after occlusion, whereas the previous systemdbtt
Sequences C and Dvere acquired using the same protogq,) switched the identities of cells 47 and 116 in frame 16,

col, aside from a frame interval of 10 minutes/frame. EaGlbtected a false mitosis in frame 36, and eventually logt cel
sequence spans 42.5 hours, and consists of 256 frames Wi, tar frame 36.

1280x 1024 pixels/frame. The cell population is roughly 2000-
5000 cells/frame, and is nearly confluent towards the end. o1
07:

TABLE I. Tracking Accuracy Comparison
Trajectory Validity

Ancestor Cell Label
o
2

Sequences Current Previous
A 74/81 (91.4%) 70/81 (86.4%) 08 "
B 86/93 (92.5%) 82/93 (88.2%) 188 maaiiEE I p i
C 78/92 (84.8%) 70/92 (76.1%) ' v
D 101/117 (86.3%) 90/117 (76.9%) 881 { T
Division Tracking Correctness | . . . . . . . . . . . . ) \
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00 33:00 36:00 39:00 42:00
Sequences Current Previous Elapsed Time (HH:MM)
A 11 (100%) 1/1 (100%)
B 0/0 (N/A) 0/0 (N/A) Fig. 6. Color-coded lineage map for selected AE cells. Red line seg-
C 47/55 (85.5%) 43/55 (78.2%) ments indicate the relative migration distances between frames. Black
D 45/52 (86.5%) 41/52 (78.8%) squares indicate cell entrance/departure. Blue text shows division time.

... _Another application of the tracking system that is valuable
A human operztor mar:jually tracl(;ed Ithe (I:e” c(;antrmds ¥d stem cell research is to automatically reconstruct tredbige
S_equences A an B, and two randomly-se ectg Xm_' maps. We used the system to construct the lineages for the
pixel subregions in Sequences C and D, respectively (Fig. ghsje population of AE cells. Fig. 6 shows a sample set of
Only those cells that appear in the initial frame of eacfq |ineage trees with cells undergoing multiple divisions
sequence an_d_thelr children were tracked. A cell trajectory\ye 4154 applied our system to study the migratory responses
is valid only if it followed the samecell through all frames of C3H10T1/2 mouse embryonic fibroblast cell populations
1A matrix is totally unimodular if the determinant of any squandmatrix on various inkjet-printed patterns of HB'EGF grovvt_h fac-
takes one of the values ifr1, 0, 1. tors. Three growth factor patterns of different concerdgrat
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Fig. 7. Migration paths of C3H10T1/2 cells in response to differently
distributed HB-EGF patterns traced every 10 minutes for 62 hours. The  [11]
paths are registered such that they share common starting points.

distributions (uniform, high-to-low gradient, and low-igh 2

gradient) are printed in each image field using a bio-inkjet
printer [13]. Example of automatic and manual cell detectio
results are shown in Fig. 5 for the purpose of qualitati\;é3
comparison. In Fig. 7, we plotted the migration paths46f
randomly selected cells on each pattern registered to share
common starting point. The plot reveals an obvious diffeeen (24
in the migration directivities in response to differenttpats.

15
IV. CONCLUSION AND FUTURE WORK [15]

We developed and validated an automated system capabl[e1
tracking thousands of individual cells in dense cell popates [17]
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incorporated spatiotemporal track linking and a biolotijca 18]
relevant motion filter, and achieved performance boostspof u
to 9% compared to its predecessor with nominal computdtiona
overhead. We plan to incorporate more effective segmemltatilg]
algorithms and graphical models to cope with more complex
cell shapes and intercellular interactions.
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