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Abstract— Automated visual-tracking of cell populations in
vitro using phase contrast time-lapse microscopy is vital for
quantitative, systematic and high-throughput measurements of
cell behaviors. These measurements include the spatiotemporal
quantification of migration, mitosis, apoptosis, and cell lineage.
This paper presents an automated cell tracking system that
can simultaneously track and analyze thousands of cells. The
system performs tracking by cycling through frame-by-frame
track compilation and spatiotemporal track linking, combining
the power of two tracking paradigms. We applied the system
to a range of cell populations including adult stem cells. The
system achieved tracking accuracies in the range of 85.9%–
92.5%, outperforming previous work by up to 9%. The proposed
tracking methodology is valuable for tissue engineering, stem cell
research, drug discovery and development, and related areas.

I. I NTRODUCTION

Automated tracking of cell populationsin vitro in time-
lapse microscopy images [6], [14], [18] can provide high-
throughput spatiotemporal measurements of a range of cell be-
haviors, includingmigration(translocation),mitosis(division),
apoptosis(death), andlineage(parent-daughter relations). This
capability is valuable to research in genomics, proteomics,
stem cell biology, and tissue engineering.

Traditional approaches for tracking includetracking by
detection and tracking by model-evolution, each with its
advantages and disadvantages. Recently, efforts were made
to combine the strengths of both approaches and mitigating
against their weaknesses [12]. The solution was to integrate
four collaborative modules, including: 1)cell detector, which
detects and labels candidate cell regions in the input image;
2) cell tracker, which propagates cell regions and identities
across frames; 3)dynamics filter, which performs prediction
and filtering of the cell motion dynamics using a Kalman
filter; and 4)track arbitrator, which manages the tracking task
by incorporating newly-entered cells, removing departed/dead
cells, establishing cell lineages, and recovering lost tracks.
The system can simultaneously track thousands of living cells
imaged with phase-contrast microscopy in realtime [12].

However, several limitations are inherent in the aforemen-
tioned tracking system. First, all of its modules operate in
a frame-by-frame manner. Hence, only very limited spa-
tiotemporal context is considered, hindering the capability in
resolving complete or long term occlusions. Secondly, the
track arbitrator module makes immediate, hard decisions for
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Fig. 1. Examples of phase contrast microscopy images of cell popu-
lations. (a) shows MG-63 human osteosarcoma cells; and (b) shows
human amnion epithelial (AE) cell population. The images are contrast-
enhanced for the purpose of display and publication.

each frame, precluding the possibility for retrospective error
detection and correction. Thirdly, the Kalman filter used for
dynamics filtering is bound to use one dynamics model only,
which can be problematic as the dynamics of cells may vary
frequently with time.

We propose an improved tracking system to address the
above issues. Specifically, we divide the track arbitrator into
two submodules:track compilerand track linker. Track com-
piler operates in a frame-by-frame manner and produces
intermediate tracking results calledtrack segments. Track
linker oversees the entire tracking history and establishes final
cell trajectories and lineages only when enough information
is available. We also adopt theinteracting multiple models
(IMM) filter [4], which allows multiple dynamics models in
parallel, and was shown to be more biologically relevant than
a Kalman filter [8]. We focus on reliable long-term tracking of
cell centroid locations and lineages. Accurate segmentation of
cell boundaries is a plus, but not the emphasis of this paper.

II. M ETHODS

The proposed tracking system has five major modules
(Fig. 2). The trajectory of one cell may consist of multiple
track segments. The system associates each cell track segment
with a unique positive-integer labeln. We identify each cell
using the label of its first track segment. Letk = 0, ...,K be
the frame index. The cell regions in an image frameIk(x, y)
are represented using a region labeling functionψk(x, y).
Whereinψk(x, y) = n if pixel (x, y) is part of celln, and
ψk(x, y) = 0 if pixel (x, y) belongs to the background. To
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Fig. 2. System Overview

initialize tracking, the system generates initial cell labeling
ψ0(x, y) by running the cell detector on the first frame
I0(x, y). For each subsequent frameIk(x, y):

Step 1:The cell detector classifies the image pixels into cell
(C) and background (B) regions by a combined use of mor-
phorlogical rolling-ball filtering [17] and a Bayesian classifier
based on estimated cell and background color histograms.
The histograms are initially learned off-line and incrementally
updated on-the-fly using the tracking result as feedback. The
output is a binary map of cell regions, denotedζk(x, y). Each
connected foreground component inζk(x, y) is considered as
a cell candidatein framek.

Step 2: The cell tracker propagates the cell region labeling
ψk−1(x, y) from framek − 1 to framek. We use a fast level
set algorithm proposed in [16] to segment cell regions and
to propagate the corresponding cell labels. We first initialize a
level set functionφk(x, y) usingψk−1(x, y). Thenφ andψ are
evolved together to minimize an “energy” functional that com-
bines a region-competition term [19], a geodesic edge term [5],
and a dynamics term based on the cell dynamics predicted by
the dynamics filter. To prevent contours that represent different
cells from merging, we incorporate topological constraints
to the level set evolution. The output is the propagated cell
labeling for framek, denotedψ∗

k(x, y).

Step 3: The track compiler compares the output of the
cell detector and cell tracker, and take one of the following
actions: to create a new or daughter track segment, to update
an existing track, or to terminate a track. Meanwhile, the
dynamics filterupdates the cell dynamics state in framek,
and predicts its state for framek + 1. The output includes
the track segments, an updated region labelingψk(x, y), and
updated cell and background histograms.

Step 4: The track linker examines all track segments up to
framek, and detects whether two or more track segments may
correspond to one cell. It attempts to link track segments in
the spatiotemporal image volume, and to form more complete
cell trajectories. The updated cell trajectories are fed back to
the track compiler for subsequent tracking in framek + 1.

The following sections elaborate on the dynamics filter,
track compiler, and track linker. We refer readers to [12] for
details on the other modules.

A. Interacting Multiple Models Dynamics Filter

The mechanism underlying cell locomotion involves a
complicated set of factors. Mathematical modeling of this
mechanism relies on the solution of an inverse problem [2],
which is, unfortunately, ill-posed given limited image data. To
reach a realistic model of cell dynamics for the purpose of
tracking, several simplifying assumptions must be made. Our
assumptions include: 1) the cell shape can be approximated by
an ellipse at appropriate scales of observation, which can be
parameterized by its centroid and a covariance matrix; 2) the
cell centroid translocation and intensity change are governed
by two independent dynamical processes; and 3) the dynamical
processes governing different cells are independent. These
seemingly-restrictive assumptions allow us to employ state-
space dynamical filtering to estimate unknown cell states from
noisy measurements in real-time. With the collected strength
of multiple modules and spatiotemporal inference, this ap-
proach allows us to achieve satisfactory tracking performance
at realistic computational overhead.

We define the state of each cell in framek to consist of two
subcomponents: a (centroid) motion statesO

k and an intensity
statesI

k. The motion state is defined as a concatenation of
the cell centroid coordinates in the last three frames:sO

k =
(xk, yk, xk−1, yk−1, xk−2, yk−2)

T , where the superscriptT
denotes matrix transposition. Analogously, the intensitystate
is a concatenation of the mean cell intensities in the last three
frames, i.e.,sI

k = (ik, ik−1, ik−2)
T . The corresponding motion

measurement vectorzO
k and intensity measurement vectorzI

k

consist of the measured cell centroid coordinates and mean
intensity in framek, respectively. In the following text, we
focus on the dynamical filtering of cell centroid motion. A
similar discussion applies to the filtering of cell intensities.
For brevity, we will omit the superscripts,O and I, on the
state and measurement vectors.

Suppose cellular motion consists of a finite number of
modes, each of which can be described by a linear state-space
model with additive Gaussian noise:

sk = Fisk−1 + vi
k−1, (1)

zk = Hsk + wk. (2)

Here, matrixFi is the state transition matrix of modeli ∈
{1, ..., r}, wherer is the number of models.H is the mea-
surement matrix that relates states to measurements.vi

k−1 and
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wi
k are the process and measurement noise vectors, which are

uncorrelated zero-mean Gaussian processes with covariances
Qi and R, respectively. The determination of these model
parameters will be discussed in the next section.

The interacting multiple models (IMM) filter [4] operates
several Kalman filters in parallel. Each filter is matched to a
distinct mode of target motion. A finite state Markov chain
governs the transition between models, with probabilitypij

of switching from modeli to modelj in successive frames.
The (forward-time) filtering recursion consists of two stages:
predictionandcorrection.

Prediction: Starting fromr weightsρi
k−1, stateŝsi

k−1 and
covariancesPi

k−1 from the previous iteration, we compute the
mixed initial condition:

ŝ
0j
k−1

=
∑

i

ρ
i|j
k−1

ŝi
k−1, (3)

P
0j
k−1

=
∑

i

ρ
i|j
k−1

[

Pi
k−1 +

(

ŝi
k−1 − ŝ

0j
k−1

)

(...)
T
]

, (4)

where ρi|j
k−1

= pijρ
i
k−1/ρ

j

k|k−1
, ρj

k|k−1
=

∑

i pijρ
i
k−1, and

(...) denotes a replication of the previous term. These are input
to r Kalman filters to compute the state predictionŝj

k|k−1

and covariancePj

k|k−1
. The combined state and covariance

predictions can be determined by:

ŝk|k−1 =
∑

j

ρj

k|k−1
ŝ
j

k|k−1
, (5)

Pk|k−1 =
∑

j

ρj

k|k−1

[

P
j

k|k−1
+ (ŝj

k|k−1
− ŝk|k−1)(· · · )

T
]

.

(6)

These are fed to the cell tracker to guide the level set evolution
in framek [12].

Correction: Given the predicted states, covariances, and
measurementzk (Fig. 2), we use the Kalman filters to obtain
the updated statêsj

k and covariancePj
k. The likelihood that

model j is activated in framek is

λj
k = exp

[

−
1

2
(yj

k)T (Sj
k)−1y

j
k

]

/

√

2π det(Sj
k), (7)

where y
j
k = (zk − ẑk|k−1) is the innovation of Kalman

filter j, andS
j
k is the associated covariance. Then, the com-

bined statêsk and covariancePk estimates can be computed
by Equations (5) and (6), withρj

k|k−1
replaced byρj

k =

ρj

k|k−1
λj

k/(
∑

i ρ
i
k|k−1

λi
k).

To initialize the IMM filter, the system tracks each cell
without dynamical filtering in the first three frames that it
appears. It uses the concatenation of measurements in these
frames as the initial cell statês0, and sets the initial error
covariancesPi

0 (for all i) to be the Kronecker product of
a 3×3 identity matrix andR. The initial model weightsρi

0

are taken as1/r, indicating complete uncertainty as to which
model is initially correct.

B. Maximum-Likelihood Parameter Estimation for IMM

The efficacy of the IMM filter hinges on the parametersFi,
H, Qi, R, and the model transition probabilitiespij (i, j ∈

{1, ..., r}). Inspired by [8], we define three models of cell
dynamics: random walk, first-order, and second-order linear
extrapolation. They represent three typical modes of cellular
motion: Brownian motion, migration with constant speed,
and migration with constant acceleration. The corresponding
system matrices are:

F1 =





I 0 0

I 0 0

0 I 0



 , F2 =





2I −I 0

I 0 0

0 I 0



 ,

F3 =





3I −3I I

I 0 0

0 I 0



 , H =
[

I 0 0
]

, (8)

where I is an 2 × 2 identity matrix, and0 denotes a2 × 2
zero matrix. We chose the transition probabilities aspij =
1/3 (∀i, j ∈ {1, 2, 3}), allowing equally probable switching
between any two models.

With these parameters set, we can estimate the remaining
parametersQi andR from off-line training sequences using
the expectation-maximization (EM) algorithm. With the un-
known parameters denoted byΘ ≡ {Qi,R}, our objective
is to estimate the parametersΘ and the hidden statesS =
{s0, ..., sK} based on the measurementsZ = {z−2, ..., zK}.
The index of the measurement sequence starts from−2
purely for the convenience of notation. We use the first three
measurements{z−2, z−1, z0} to obtain the initial states0.

The EM algorithm maximizes the complete-data log likeli-
hood, defined by

logP (S,Z|Θ) =

−
K + 3

2
log |R| −

K

2
log |Qi|

−
1

2

K
∑

k=1

(zk −Hsk)T R−1(zk −Hsk)

−
1

2

K
∑

k=1

(sk − Fisk−1)
T (Qi)−1(sk − Fisk−1)

+ constant, (9)

where| · | denotes matrix determinant. Note that to obtain Eq.
(9), we utilized the fact that the initial error covariancePi

0

equals the Kronecker product of a 3×3 identity matrix and
R, and hencelog |P0| = 3 log |R|.

The maximization oflogP (S,Z|Θ) with respect to the
unknown parametersΘ is a chicken-and-egg problem since the
system statesS are also unknown. The EM algorithm solves
this problem by iterating between two steps: anexpectation
(E) step and amaximization(M) step.

1) E Step: The E step finds the expected value of the
complete-data log likelihood with respect to the unknown
statesS, given the observed dataZ and the current parameter
estimatesΘold, i.e.,:

Q(Θ|Θold) = E
[

logP (S,Z,Θ|Z,Θold)
]

. (10)
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This quantity depends on three expectations:

ŝk|K ≡ E
[

sk|Z,Θ
old)

]

(11)

Pk|K ≡ E
[

sks
T
k |Z,Θ

old)
]

(12)

Pk,k−1|K ≡ E
[

sks
T
k−1|Z,Θ

old)
]

(13)

Note that the estimateŝsk|K and P̂k|K differ from the ones
computed by the forward-time IMM filter in that they depend
on past as well asfuture observations. To obtain these esti-
mates we utilize the fixed-interval IMM smoother proposed
by Helmick et al [9]. The algorithm uses two IMM filters.
One of the filters propagates in the forward-time direction,and
produces estimateŝsj

k andP
j
k as given previously. The other

filter propagates in the backward-time direction, and produces
estimateŝsb,i

k , P
b,i
k , ŝ

b,i

k|k+1
and P

b,i

k|k+1
. We refer the reader

to [9] for details on the backward-time IMM filter. The IMM
smoother combines the forward and backward filtered outputs
to obtain smoothed estimates following the procedure below.

Step 1:Compute combined estimates:

ŝ
ji

k|K = P
ji

k|K

[

(Pj
k)−1ŝ

j
k + (Pb,i

k|k+1
)−1ŝ

b,i

k|k+1
)
]

,

P
ji

k|K =
[

(Pj
k)−1 + (Pb,i

k|k+1
)−1

]−1

,

P
ji

k+1,k|K =
[

(Pj

k+1,k|k)−1 + (Pb,i

k+1,k|k+1
)−1

]−1

, (14)

with P
j

k+1,k|k = FjP
j
k, andP

b,i

k+1,k|k+1
= P

b,i
k+1

[(Fi)−1]T .
Step 2:Compute model-conditioned smoothed estimates:

ŝ
j

k|K =

r
∑

i=1

µ
i|j
k+1|K ŝ

ji

k|K ,

P
j

k|K =

r
∑

i=1

µ
i|j
k+1|K

[

P
ji

k|K + (ŝji

k|K − ŝ
j

k|K)(...)T
]

,

P
j

k+1,k|K =

r
∑

i=1

µ
i|j
k+1|K

[

P
ji

k+1,k|K

+ (ŝji

k+1|K − ŝ
j

k+1|K)(ŝji

k|K − ŝ
j

k|K)T
]

. (15)

The conditional probabilityµi|j
k+1|K is obtained by

µ
i|j
k+1|K = pjiλ

ji
k /γj , with γj =

r
∑

i=1

pjiλ
ji
k . (16)

The likelihoodλji
k is given by

λji
k = N (ŝb,i

k|k+1
− ŝ

j
k; 0,Pb,i

k|k+1
+ P

j
k), (17)

whereN (·) denotes a multivariate normal distribution.
Step 3:Compute the overall smoothed estimates:

ŝk|K =

r
∑

j=1

µs,j
k ŝ

j

k|K ,

Pk|K =

r
∑

j=1

µs,j
k

[

P
j

k|K + (ŝj

k|K − ŝk|K)(...)T
]

,

Pk+1,k|K =

r
∑

j=1

µs,j
k

[

P
j

k+1,k|K

+ (ŝj

k+1|K − ŝk+1|K)(ŝj

k|K − ŝk|K)T
]

. (18)

The smoothed model probabilityµs,j can be computed as

µs,j
k =

γjµ
j
k

∑r

j=1
γjµ

j
k

, (19)

whereµj
k is the forward-time filtered model probability.

2) M Step: The M-step of the EM algorithm re-estimates
the unknown parameters by maximizing the expectation we
computed in the first step, i.e.,

Θnew = max
Θ

Q(Θ|Θold). (20)

By taking the partial derivatives ofQ with respect to(Qi)−1

andR−1, and setting the respective result to zero, we obtain

(Qi)new =
1

K

K
∑

k=1

[

Pk|K − FiPk−1,k|K

− Pk,k−1|K(Fi)T + FiPk−1|K(Fi)T
]

, (21)

Rnew =
1

K + 3

K
∑

k=1

(

zkz
T
k − 2Hŝk|KzT

k + HPk|KHT
)

.

(22)

The expectation and maximization steps are computed re-
peatedly until the relative absolute change of the expectedlog
likelihood is below a threshold. Each iteration is guaranteed
to increase the log likelihood, and the algorithm will converge
to a local maximum of the log likelihood function.

As an possible enhancement to the above approach, we
can also treat the transition probabilities as unknowns and
estimate them online using historical tracking data [7], [10].
This approach needs further experimental validation and will
be our future work. In addition, while the EM algorithm
permits the estimation ofFi andH from training data as well,
the resulting matrices may be arbitrary and hard to interpret.
With predefined system matrices, we gain additional insightas
to identifying the typical motion mode of each cell. That is,we
can identify whether the motion of a cell is predominated by
random walk, migration with constant speed, or acceleration
based on the model weightsρi

k output by the IMM filter.

C. Track Compilation

The track compiler coordinates cell detector, cell trackerand
motion filter to produce track segments. We useNk to denote
the set of labels of all track segments created up to framek.
A track segment isactive in frame k if it was successfully
tracked in framek− 1, otherwise it becomesinactive. Let Ω0

denote the background region, andΩn denote the cell region
with labeln. An outline of the track compilation algorithm is
shown in Algorithm 1.

The compiler first compares the output of the cell detector
and cell tracker,ζk(x, y) andψ∗

k(x, y). Each cell candidate in
ζk(x, y) that does not overlap with any propagated cell region
in ψ∗

k(x, y) is considered anewcell. A new track segment will
be initialized, andψ∗

k(x, y) will be updated accordingly.
Next, the algorithm scans through all active track segments,

and deactivates track segments whose labels are not found
in the propagated region labelingψ∗

k(x, y). A track segment
whose corresponding propagated cell region contains only one



5

Fig. 3. Visualization of tracking results of AE cells in the subregion used for quantitative validation. Left: original image. Right: the image with cell
trajectories overlaid. Red rectangles indicate cells that were detected to be mitotic in the past T = 10 frames.

Algorithm 1 : TrackCompilation

Ω0 ← {(x, y)|ψ
∗
k(x, y) = 0}

1 foreach cell candidateω ⊂ ζk do
if ω ⊂ Ω0 then AddTrack(nnew, k, ω)

2 foreach active trackn ∈ Nk−1 do
Ωn ← {(x, y)|ψ

∗
k(x, y) = n}

3 if Ωn = ∅ then DeactivateTrack(n)
4 else if IsDivided(Ωn) then

if IsMitotic(n, k) then
foreach connected componentω ⊂ Ωn do

AddDaughterTrack(ndaughter, n, k, ω)

else
5 ω∗ ←SelectBestMatch(n, k,Ωn)

UpdateTrack(n, k, ω∗)
foreach connected componentω ⊂ Ωn \ ω

∗

do AddTrack(nnew, k, ω)

6 elseUpdateTrack(n, k,Ωn)

connected component will be updated directly. If a cell region
consists of more than one well-separated connected compo-
nents, the track compiler will judge between two possibilities:
1) the cell divided into daughter cells; or 2) one or more of
these components are from occluded cells or close-by newly-
entered cells. The algorithm will either create daughter tracks
or continue tracking using the component that best matches
the cell trajectory, depending on whether the cell is previously
detected to be mitotic.

Details of several key operations are as follow.
AddTrack (ω, nnew, k) creates a new track segment labeled

nnew; fills region ω with nnew; and initializes the cell state

based on measurements ofω.
UpdateTrack(n, k, ω) updates the track segmentn using

the features of regionω, including centroid location, mean
intensity, area, and eccentricity. We feed the centroid and
mean intensity to the motion filter to obtain a filtered state
of cell n in frame k. We use the last three features to
classify a cell as normal, mitotic, or apoptotic, using nearest
neighbor matching with Mahalanobis distance to a set of
training samples obtained off-line.

AddDaughterTrack(ndaughter, n, k, ω) creates a daughter
track of cell n with a unique labelndaughter, and fills the
regionω with ndaughter. The state of the daughter cell will be
computed based on the measured centroid location and mean
intensity ofω, and the predicted state of celln.

SelectBestMatch(n, k,Ωn) selects componentω∗ ∈ Ωn

that best matches the dynamics of celln, i.e., the one which
maximizes the innovation likelihood given by Equation (7)
among all dynamic models.

IsDivided(Ωn) returns true if region Ωn has multiple
connected components, and the minimum distance between
any two points in different components is greater than a preset
thresholdD. Otherwise, it returnsfalse.

IsMitotic (n, k) determines if celln is mitotic during the
pastT frames.

D. Track Linking

The track linker detects potential problems among all track
segments up to framek based on two physical constraints: 1)
a cell does not vanish unless it leaves the field-of-view, dies
and releases into the media, or is occluded; and 2) a cell does
not appear unless it enters from outside, divides from another
cell, or comes out of occlusion. The linker attempts to correct
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Fig. 4. Tracking AE cells through occlusion. Top row: The new system correcly tracked cell 116, which was completely occluded by cell 47 and
reappeared later. Bottom row: Incorrect result was produced by the previous system, where cell 116 switched with cell 47 and was lost eventually.
The numbers at the top-right corner are frame indices. The trailing curves represent cell trajectories. Different colors represent different cell lineages.

violations of these constraints by linking track segments into
complete cell trajectories using spatiotemporal context.

Algorithm 2 outlines the track linking algorithm. Wherein,
Nlost ≡ {nl|l = 1, ..., L} denotes the label set of track
segments that end before framek, and Nfound ≡ {nf |f =
1, ..., F} denotes the label set of track segments that start after
frame 0. Most operations in the algorithm are self-explanatory.
One vital step is the matching between lost and appeared track
segments:MatchTracks(Line 5).

Algorithm 2 : TrackLinking
Nlost,Nfound← ∅

1 foreach track n ∈ Nk do
2 if IsShort(n, k) then DeleteTrack(n)
3 else if LostInField(n, k) then Add n to Nlost

4 else if FoundInField(n, k) then Add n to Nfound

5 MatchTracks(Nlost,Nfound)
foreach nl ∈ Nlost do

6 if IsMatched(nl, nf ∈ Nfound) then
LinkTracks(nl, nf )

7 else if IsMatched(nl;nf1
, nf2

∈ Nfound) then
LinkTracks(nl;nf1

, nf2
)

In MatchTracks, we first create a bipartite graphG, whose
nodes correspond to the labels inNlost andNfound. For each
node pair(nl, nf ), we create an arc〈nl, nf 〉 between nodenl

and nodenf if the last centroid location(xl, yl, kl) of track
nl is within a spatiotemporal double cone centered at the first
centroid location(xf , yf , kf ) of track nf , i.e.,

√

(xl − xf )2 + (yl − yf )2 ≤ |kl − kf |R+R0, and

|kl − kf | ≤ D/2,

whereD, R and R0 are user-defined parameters. Each arc
〈nl, nf 〉 is assigned a weightwlf = λmax

nl,kf
(nf ), which

is the maximum innovation likelihood of tracknl on the
measurement of tracknf in framekf (Eq. 7). Intuitively,wlf

indicates how likely tracknf is a continuation ofnl based on
the dynamics ofnl.

Next, we compute a maximum-likelihood matching between
tracksnl andnf . The approach we reported previously [11]
only considered one-to-one matches. Hence, it could not
handle the case where a cell is lost track during a mitosis, and
whose daughter cells are re-detected in later frames. To handle
this case, we propose an improved algorithm that considers
both one-to-one and one-to-two matches. The algorithm rely
on two inputs: anH × (L + F ) constraint matrixC and an
H × 1 likelihood vectord, whereH is the total number of
one-to-one and one-to-two matching hypotheses. We construct
matrix C and vectord as follows.

For each arc〈nl, nf 〉 in G, we append a new row toC and
a corresponding new element tod. Let h be the index of this
new row. We setd(h) = wlf , and

C(h, i) =

{

1, if i = l or i = L+ f ,
0, otherwise.

For each nodenl that is connected to multiple nodes
nf1

, · · · , nfm
∈ Nfound (m ≥ 2), we enumerate all possible

one-to-two matchings, e.g.,nl → (nf1
, nf2

), nl → (nf1
, nf3

),
and so on. For each of these hypotheses, saynl → (nf1

, nf2
),

we append a new row with indexh′ to C and a corresponding
new element tod. We setd(h′) to be the maximum innovation
likelihood of tracknl on the spatiotemporal average of the
starting points of tracksnf1

andnf2
, and

C(h′, i) =

{

1, if i = l, i = L+ f1, or i = L+ f2,
0, otherwise.

With C and d constructed, the matching problem reduces
to selecting a subset of rows ofC such that the sum of cor-
responding elements ind is maximized, under the constraint
that no two rows share common nonzero entries. This can be
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posed as the following integer programming problem:

max
x

dT x, s.t. CT x ≤ 1, (23)

where1 is aH×1 vector of ones.x is aH×1 binary vector
to be solved for, withx(h) = 1 if row h is selected in the
solution, orx(h) = 0 otherwise. While integer programming
problems are in general NP-hard, the problem given in Eq. (23)
can be solved exactly using linear programming. This is due to
the fact that the constraint matrixC is totally unimodular1, and
the right-hand sides of the constraints are all integers. Infact,
if the above two conditions are satisfied, a linear programming
problem will always have an integer-valued solution [15]. In
practice, we use the open-source software packagelpsolve[3]
to solve the above integer programming problem. Note that a
similar integer programming approach was used by Al-Kofahi
et al [1] for inter-frame cell matching.

III. E XPERIMENTS AND RESULTS

We quantitatively analyzed the performance of our system
on two image sequences (A and B) of MG-63 human os-
teosarcoma cells used previously in [12], and two sequences
(C and D) of proprietary amnion epithelial (AE) stem cells.
Examples of phase-contrast microscopy images of these cell
lines are shown in Fig. 1.

Sequences A and Bwere acquired with a 12-bit Qimaging
Retiga EXi Fast 1394 CCD camera mounted on a Zeiss
Axiovert 135 TV microscope, at an interval of 4 minutes/frame
for 10 hours. Each sequence consists of 150 frames, with
512×512 pixels/frame, and 1.9µm/pixel at 4.9x magnification.
The cells were seeded randomly on a polystyrene dish.

Sequences C and Dwere acquired using the same proto-
col, aside from a frame interval of 10 minutes/frame. Each
sequence spans 42.5 hours, and consists of 256 frames with
1280×1024 pixels/frame. The cell population is roughly 2000-
5000 cells/frame, and is nearly confluent towards the end.

TABLE I. Tracking Accuracy Comparison

Trajectory Validity

Sequences Current Previous
A 74/81 (91.4%) 70/81 (86.4%)
B 86/93 (92.5%) 82/93 (88.2%)
C 78/92 (84.8%) 70/92 (76.1%)
D 101/117 (86.3%) 90/117 (76.9%)

Division Tracking Correctness

Sequences Current Previous
A 1/1 (100%) 1/1 (100%)
B 0/0 (N/A) 0/0 (N/A)
C 47/55 (85.5%) 43/55 (78.2%)
D 45/52 (86.5%) 41/52 (78.8%)

A human operator manually tracked the cell centroids in
Sequences A and B, and two randomly-selected 256×256-
pixel subregions in Sequences C and D, respectively (Fig. 3).
Only those cells that appear in the initial frame of each
sequence and their children were tracked. A cell trajectory
is valid only if it followed the samecell through all frames

1A matrix is totally unimodular if the determinant of any square submatrix
takes one of the values in{-1, 0, 1}.

that the cell is visible. The operator also manually identified
all mitosis events. We compared the tracking results produced
by the current and the previous systems, as shown in Table I.

Fig. 5. Automatic versus manual detection of C3H10T1/2 stem cell
populations in response to inkjet-printed patterns of HB-EGF growth
factor. The cells are seeded near the bottom of the image. Yellow rect-
angles indicate the locations of grow factor patterns. The concentration
distributions of the patterns are (from left to right, bottom to top): uniform,
high-to-low, and low-to-high. The thick yellow lines indicate the migration
front defined as the 90th percentile boundary of the cell population.

We visually compared the current tracking results with
those produced by the previous system [12] for more than 30
sequences of AE stem cells. The new system showed superior
robustness in handling long-term occlusion and against cell
detection error. Fig. 4 shows an example where cell 116 is
occluded by cell 47 in frame 36 and reappeared in frame 46.
The new system (top row) correctly recovered the trajectoryof
cell 116 after occlusion, whereas the previous system (bottom
row) switched the identities of cells 47 and 116 in frame 16,
detected a false mitosis in frame 36, and eventually lost cell
47 after frame 36.

Fig. 6. Color-coded lineage map for selected AE cells. Red line seg-
ments indicate the relative migration distances between frames. Black
squares indicate cell entrance/departure. Blue text shows division time.

Another application of the tracking system that is valuable
to stem cell research is to automatically reconstruct cell lineage
maps. We used the system to construct the lineages for the
whole population of AE cells. Fig. 6 shows a sample set of
the lineage trees with cells undergoing multiple divisions.

We also applied our system to study the migratory responses
of C3H10T1/2 mouse embryonic fibroblast cell populations
on various inkjet-printed patterns of HB-EGF growth fac-
tors. Three growth factor patterns of different concentration
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Fig. 7. Migration paths of C3H10T1/2 cells in response to differently
distributed HB-EGF patterns traced every 10 minutes for 62 hours. The
paths are registered such that they share common starting points.

distributions (uniform, high-to-low gradient, and low-to-high
gradient) are printed in each image field using a bio-inkjet
printer [13]. Example of automatic and manual cell detection
results are shown in Fig. 5 for the purpose of qualitative
comparison. In Fig. 7, we plotted the migration paths of40
randomly selected cells on each pattern registered to sharea
common starting point. The plot reveals an obvious difference
in the migration directivities in response to different patterns.

IV. CONCLUSION AND FUTURE WORK

We developed and validated an automated system capable of
tracking thousands of individual cells in dense cell populations
in phase contrast microscopy image sequences. The system
incorporated spatiotemporal track linking and a biologically
relevant motion filter, and achieved performance boosts of up
to 9% compared to its predecessor with nominal computational
overhead. We plan to incorporate more effective segmentation
algorithms and graphical models to cope with more complex
cell shapes and intercellular interactions.
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