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Abstract. Automated tracking of individual cells in populations aims at 

obtaining fine-grained measurements of cell behaviors, including migration 

(translocation), mitosis (division), apoptosis (death), shape deformation of 

individual cells, and their interactions among cells. Such detailed analysis of 

cell behaviors requires the capabilities to reliably track cells that may 

sometimes partially overlap, forming cell clusters, and to distinguish cellular 

mitosis/fusion from split and merge of cell clusters. Existing cell tracking 

algorithms are short of these capabilities. In this paper, we propose a cell 

tracking method based on partial contour matching that is capable of robustly 

tracking partially overlapping cells, while maintaining the identity information 

of individual cells throughout the process from their initial contact to eventual 

separation. The method has been applied to a task of tracking human central 

nervous system (CNS) stem cells in differential interference contrast (DIC) 

microscopy image sequences, and has achieved 97% tracking accuracy. 
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1   Introduction 

Automated analysis of cell behaviors in time-lapse microscopy images is 

important for research and discovery in biology and medicine. A prerequisite of 

automated cell behavior analysis is to reliably track individual cells within a 

population. A reliable cell tracking system should be capable of tracking not only well 

separated cells, but also cells that are touching or partially overlapping. When 

multiple cells touch or overlap, they appear to form a cell cluster with blurry 

intercellular boundaries. Tracking such multiple adjacent cells that are touching 

and/or partially overlapping each other constitutes a performance bottleneck of most 

existing cell tracking algorithms, which may either lose track of one or more of the 

cells, or confuse their identities. These errors are frequently compounded with the 

misclassification of the split and merge of cell clusters as cellular division or fusion 

events, resulting in erroneous cell lineages. 

Many methods have been proposed for cell tracking. Active contour methods, in 

particular level-sets methods that can handle changes in topology, are widely used in 

cell segmentation and tracking [1][2][3]. However, it is still difficult to separate a 

cluster of multiple cells, whose degree of overlap is high. Watershed methods [4] are 
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also popular in cell segmentation [5][6]. They can separate a cluster if the seeds are 

well chosen, but excessive seeding results in over segmentation. In segment-and-

associate approaches [5][7], cells are first detected in each frame, and then the 

detected cells are associated between previous and current frames. This approach 

loses track when a detection error occurs. Adopting motion models [1], such as 

Kalman filters and particle filters, are effective for alleviating the problem, but when 

multiple cells are overlapped over many frames, loss of tracks or confusion of each 

cell’s identity still occurs. 

This paper proposes a tracking method that uses contour shapes of cells and  

that of cluster in order to reliably track individual cells even when they have partial 

overlap. When cells touch and overlap, the boundary contour of the resultant cluster is 

made of the partial contours of those cells that constitute the cluster. As the manner 

and degree of overlap change, as well as the contours of member cells themselves,  

the resultant cluster boundary contour also continually deforms. The deformation 

provides the primary cue for distinguishing individual cells in a cluster. The proposed 

method utilizes this information by the optimal matching of partial cell contours with 

the cluster boundary contour.  

For each cell, its contour shape is identified when it first appears, and is updated 

while being tracked. When multiple cells touch and overlap, and form a cluster, we 

compute the optimal combination of their partial contours such that they together 

comprise the cluster boundary. Those partial contours identified are maintained as the 

updated contours of the respective member cells. This process is repeated until they 

separate and no longer form a cluster. This way, the method can maintain each cell’s 

identity information throughout the process from their initial contact to eventual 

separation.  

We have applied the method to a task of tracking migrating and proliferating 

human central nervous system (CNS) stem cells in image sequences of differential 

interference contrast (DIC) microscopy, and have achieved 97% tracking accuracy 

despite the frequent formation of multiple-cell clusters. 

2   Cell Tracking System 

Fig. 1 shows the contour-based cell tracking system overview. Each image frame of a 

DIC image sequence is processed in three steps: 1) Step of preconditioning and 

segmentation converts an input image to a binary image consisting cell or cell cluster 

blobs; 2) Step of cell-blob correspondence computes the correspondence between the 

cells in the previous frame and the blobs detected in the current frame, and identifies 

cell clusters; and 3) Step of separation of overlapping cells separates each cluster to 

its member cells by using partial contour matching. 

 

 
Fig. 1. Contour based Cell Tracking System Overview. 
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2.1   Preconditioning and Segmentation of DIC Image 

Differential interference contrast (DIC) microscope is widely used for long term 

imaging of unstained, transparent specimens, such as living cells and microorganisms. 

Due to the dual-beam interference optics of a DIC microscope, DIC images include 

non-uniform shadow-cast artifacts as shown in Fig. 2 (a), making its direct 

segmentation difficult. To facilitate segmentation, we have adopted the image 

preconditioning technique recently developed in [8]. The technique utilizes the opto-

physical principle of image formation by DIC microscopy, and transforms an input 

DIC image into an artifact-free image by minimizing a nonnegative-constrained 

convex objective function. In the resultant transformed image shown in Fig. 2 (b), 

cells appear as regions of positive values against a uniformly-zero background. A 

simple thresholding technique, such as Otsu thresholding, can easily segment out the 

cell regions (Fig. 2 (c)). One may notice that the segmented blobs exclude some 

portions of the cells, such as long, thin parts, called processes, that extend from them. 

This exclusion is intentional because these portions, while important for later analysis, 

tend to confuse the tracking process since they deform significantly over time. They 

can be included later for further processing once cell identities are established. 

 

 
Fig. 2. (a) original image. (b) preconditioned image. (c) detected cell blob region 

overlaid on the original image. 

2.2   Cell-Blob Correspondence 

The tracking system assigns a positive integer ID to each cell that is being tracked as 

its unique identifier. As its descriptor, each cell has its parent identifier Parent-ID for 

maintaining its lineage information (Parent-ID=0 for cells with no parent, i.e., those 

cells that appear in the very first frames) and its state information (i.e., its centroid 

and contour shape of the cell region) at each frame. 

In each frame, the system determines the motion of each cell based on the spatio-

temporal history of cells up to the previous frame and the blobs detected in the current 

frame. For this purpose, the system first generates an association matrix [9], denoted 

by M; M(i,j) indicates the degree of overlapping between cell i in the previous frame 

and blob j detected in the current frame. Where cell i associates with blob j if the 

overlapping ratio is greater than  (  by default). There are several 

different events for a cell, determined by M; 1) Migration: if a tracked cell i is 

associated to only one detected blob j and vice versa, cell i is considered to have 
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migrated to blob j and its state is updated accordingly; 2) Division: when a tracked 

cell i is uniquely associated with two separate blobs j1 and j2, cell i is considered to 

have divided to blobs j1 and j2, and two daughter cells are created with i as the parent 

cell;. 3) Entering view: when a blob is not associated with any cell, and it is close to 

the image boundary, it is considered as a new cell having entered the field of view, 

and a new cell descriptor is created; 4) Exiting view: if a cell that was near the image 

boundary in the previous frame is not associated to any blob, it is considered to have 

exited out of the view and its tracking is terminated.  

For the following three cases, the system defers the decision on cell 

correspondence to the next step of partial contour matching: 5) Overlap: multiple 

cells are associated with one blob; 6) Joint migration in a cluster: two or more cells 

that have been in a cluster in the previous frame are again associated with one blob; 7) 

Separation from a cluster: two or more cells that have been in a single cluster are now 

associated with two or more blobs. 

A simplest example of Case 6 (Joint migration in a cluster event) is shown in 

Fig. 3. Cell 1 is associated to Blob 1’ (Migration event), Cells 2 and 3 are associated 

to Blob 2’ (Joint migration in a cluster event).  Blob 2’ needs now to be separated 

into its member cells, whose method is explained in the next section.  

 
Fig. 3. Example of a Joint-migration-in-a-cluster event. (a) Tracking result at 

previous frame t-1. (b) Detected blob at current frame t. (c) Cell boundaries at 
frame t-1 are superimposed on the blob in frame t. (d) Association matrix M. 

2.3   Separation of overlapping cells 

When the system detects an event that may involve a cluster of multiple cells, such as 

Cases 5) Overlap, 6) Joint migration in a cluster or 7) Separation from a cluster, the 

system tries to separate the blob of overlapping cells into its member cells. The 

proposed method does this by using dynamic programming to obtain optimal contour 

matching of the blob contour with partial contours of candidate member cells at the 

previous frame. The method relies on the fact that as multiple cells touch or partially 

overlap, the blob contour of the resultant cluster must be comprised of partial 

contours of the member cells. The details of the algorithms are provided in the 

Appendix, and this subsection presents the basic idea with simple examples. 

Let us consider a case of tracking two overlapping cells whose respective 

boundary contours (partial or whole) in the previous frame are known. Blob 2’ in the 

frame t in Fig. 3 (b) is such an example; the (partial) contour shape of its member 

cells 1 and 2 have been established for frame t-1 as shown in Fig. 3 (a) (and redrawn 

in Fig. 4 (a) as red and white contour).  Now the task is to match these with the blob 

contour in frame t shown in Fig. 4 (b) as black contour. The matching method 
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proceeds in four steps: 1) In each contour, detect flexion points (local extremum 

points of curvature) that are candidate locations at which the contour is split; 2) 

Generate all possible combinations of matching flexion points between frame t-1 and 

frame t; 3) For each combination, compute the optimal partial matches between the 

contour segments split by the flexion points with the use of dynamic programming to 

account for cell shape deformation; 4) Select the overall optimal partial matches 

among all combinations; and, 5) Propagate the cell identity information, and update 

the member cells’ contour shape according to the selected match. 

Fig. 4 shows the result of this process. The combination of flexion point 

matching shown is the one that has produced the best match and the resultant 

assignments of the partial contour is shown in Fig. 4 (c). Fig. 5 shows a little more 

complicated example in which three cells are involved.  

Before concluding this section, it is worthwhile to mention that partial shape 

matching techniques using dynamic programming have been used in shape retrieval 

applications [10][11] for handling distorted shapes. In our application, we must 

handle multiple shapes that (partially) overlap. However, considering all 

combinations of all possible endpoints of the overlapping is computationally very 

expensive. The use of flexion point (Step 1) allows efficiently identifying probable 

endpoints of partial overlap.  

 

 
Fig. 4. Flexion points and contour segment matching. (a),(b) A combination of 

matching flexion points in successive frames (c) Result of matched partial 
contours. The result matches well with human perception of segmentation due to 
the faint dark boundary extending vertically (though that is accidental coincidence 
because that information has not been used yet by the proposed method). 

3   Experiments and Results  

3.1   Data 

DIC microscopy image sequences of human CNS stem 

cell populations were captured every 5 minutes using a 

12-bit Orca ER (Hamamatsu) CCD camera mounted on 

a Zeiss Axiovert 135 TV microscope with a 40x, 1.3 

NA oil-immersion DIC objective.  

Fig. 5. An example of 

segmenting a three-cell 
cluster into member. 
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Fig. 6. Examples of tracking results. (a-1), (b-1): Results by a method using level-

set and IMM Filter [1]; overlapping cells; (a-2) (b-2)Results by theproposed 
methodspatiotemporal cell trajectories.; Black dots are centroid of cell contour. 

 

A 0.6x lens was installed in front of the camera to increase the visual field. The image 

size is 640×512 pixels. The cell population varied in the range of 16 to 50 cells per 

frame, and cells can freely enter/exit the field of view. Manual cell tracking was 

performed by an expert biologist for a total of 800 frames containing 24683 cells. The 

results were confirmed by two other biologists and served as ground truth. 

3.2   Tracking Examples 

Two examples of tracking two and three partially overlapping cells are shown in 

Figs. 6. (a) and (b).  Fig. 6 (a-1) and (b-1) shows the tracking results by a method 

utilizing level-set and motion filter [1] which fails separating overlapping cells and 

tracking one of the cells. The results by the proposed method, shown in Figs. 6 (a-2) 

and (b-2), successfully track all the cells throughout the long overlapping period.  

Fig. 7 (a) shows a result for one whole frame, and the total results of tracking and 

cell identification for the whole sequence can generate a time-space tree, shown in 

Fig. 7 (b), which represents the complete motions of all the cells as well as their 

lineage information. 

Example 

1 

Example 

2 
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3.3   Quantitative Validation 

Table 1 summarizes tracking accuracy for 24683 cells over 800 frames. The results 

include a total of 24534 true positives (TPs), 842 false positives (FPs), and 149 false 

negatives (FNs). In terms of  and , our system 

achieved a precision of 96.7%, and a high recall of 99.4%. 

Table 2 shows tracking accuracies for different types of cell cluster motion events 

(formation, migration, separation) that involve up to three cells. In the table, C1 

stands for one cell, and C2 and C3 correspond to cell clusters containing two and 

three cells, respectively. “C1,C1àC2” stands for the event in which two cells come to 

overlap to form one cluster; “C2àC2” for the event of two cells migrating jointly as a 

cluster; “C3àC1,C2” for the event of a three-cell cluster separating into one cell and 

a two-cell cluster; and so on. The system recognizes these different cases explicitly. 

Overall, a 97% accuracy is achieved. 

Table 1.  Accuracy of cell identification 

Frame Count Cell Count TP FP FN Precision  Recall 

800 24683 24534 842 149 96.7% 99.4% 

 

Table 2.  Tracking accuracies of cell cluster motion for various events 

Event Count Errors Accuracy 

C1,C1àC2 85 3 97% 

C2 à C2 606 16 97% 

C2 à C1,C1 80 1 99% 

C1,C2 à C3 18 1 94% 

C3 à C3 48 3 94% 

C3 à C1,C2 16 2 87% 

Total 853 26 97% 

 

Fig. 7. (a) An example of tracking result for a frame. (b) A complete space-time 
track representation. 

(b) 
(a) 
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4   Conclusion 

We have presented a cell tracking method based on partial contour matching 

using dynamic programming. The method is capable of tracking migrating cells that 

sometimes partially overlap, while maintaining the identity information of individual 

cells throughout the process from their initial contact to eventual separation. We are 

further improving the cell-blob correspondence algorithms in order to deal with more 

complicated situations in which many cells and cell clusters are involved, and are 

performing more extensive validation on larger scale datasets. 

Appendix:   Algorithm of Partial Contour Matching 

This appendix presents the partial contour matching algorithm for tracking 

multiple cells that may partially overlap.  

In the following description, we first consider the case in which two cells  and 

 overlap and form a cluster . The symbols  and  denote the contours 

of cells  and  in frame , respectively. The contour of the cell cluster  in 

frame  is denoted by . The problem is to find the best match between the partial 

segments of ,  and those of . 

Flexion Point Detection and Matching 

We define flexion points on a contour as the points at which the curvature of the 

contour exceeds a certain magnitude. At each point  on a contour, the 

curvature  is computed as 

 , (1) 

 

where  and  are neighbor points of ;  denotes a cross product; and 

 is the Euclidean norm of a vector. A flexion point is detected if the curvature 

takes a local maximum and its absolute value satisfies  (  : the 

parameter is adjusted such that the number of flexion points on a blob roughly 

corresponds to the possible number of separation points of clustered cells). 

Once flexion points are detected, the algorithm generates a list of matching 

combinations between all flexion points on ,  and those on . Each 

combination is a quadruple in the form of , where ,  

represent flexion points on  and , respectively, and ,  are two 

flexion points on . The combinations are generated using the following 

procedure: 

· For each cell : 

o For each pair , compute the matching distance 

. (2) 
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o Sort the matching distances in ascending order, and select the top 

 pairs, where  is the total number of flexion point pairs. 

· Enumerate all combinations  among the selected pairs.  

In Eq. (2),  denotes the dissimilarity measure between flexion points  

and , which is a weighted combination of the curve difference  and the 

position distance  with weights  and  ( , : 

these parameters are adjusted so that  and  are of the same 

order of magnitude). The curvature distance is defined by 
 

 , (3) 

 

where  and  are contour segments of length  centered at  and , 

respectively. The position distance  is simply the 2D Euclidean 

distance. 

Matching Contour Segments by Dynamic Programming 

For each combination of matching flexion points , the 

contours are split into segments:  
 

, , , 

, , and . 
 

Here,  represents the contour segment from  to , and , 

 represent the endpoints of contour . Note that for a closed contour, the 

endpoints coincide with the flexion point. Fig. A illustrates the contour segments 

corresponding to a matching combination of flexion points in two successive frames. 

Dynamic programming is used to compute the optimal partial matching between 

( , ) and  ( ). The algorithm consists of two steps.  
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Fig. A. Flexion points and contour segment matching. (a) A combination of matching 
flexion points in successive frames and the corresponding contour segments. (b) 
Cost matrices for DP, in which the green lines are back-traced optimal paths 
corresponding to the optimal matching. (c) Contour segments used to construct the 
cost matrices. 

(a) (b) (c) 
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First, two cost matrices are constructed: one for computing the partial matching 

between  and , denoted by ; the other for the partial matching between 

 and , denoted by , where  denotes the reverse of . Suppose that 

segment  consists of  points , and  of  points 

. Then  is an  matrix with entries 
 

  (4) 

where  is the unsigned distance between the curvatures at  and 

 for , and  otherwise. The values of  for  

and/or  are defined as: 

  (5) 

where  represents a large positive value that is greater than the total cost of 

any path in the cost matrix. The cost matrix  is constructed analogously. 

Then, the algorithm computes the optimal separation point  on segment  
that splits  into two partial segments,  and 

, such that the overall matching cost between these partial 

segments and ,  is minimized. The overall matching cost  for 

 and  is defined as: 

  (6) 

  (7) 

Because the contours near the separating points are more likely to be locally concave 

than convex, the curvatures ,  at  and  are added to the cost function in 

Eq. (6) in order to penalize convex, thus favoring concave, separation points.  

With the optimal separation points identified, the optimally matching partial 

contours are obtained by back tracing the corresponding cost matrices. 

Handling N-Cell Clusters (N > 2) 

So far we have discussed partial contour matching for the two-cell cluster case. It 

is straightforward to extend the algorithm to handle three or more cells.  Consider 

the example that the contours of three cells ,  and  in frame  

merge into a single contour  in frame . Matching can be obtained by first 

considering the contours  and , and computing their 

optimal partial matching to  using the previous algorithm. Then, the partial 

contour of  that is matched to  is converted into a closed contour, , by 

interpolation. The previous algorithm is applied again to obtain a matching between 

,  and . Further extensions can be made by following the same 

approach. In practice, however, tracking individual motions of four or more 
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overlapping cells with unclear intercellular boundaries is extremely difficult, even for 

expert cell biologists. The task remains for further algorithm development. 
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