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Abstract

Computer vision analysis of cells in phase-contrast mi-
croscopy images enables long-term continuous monitoring
of live cells, which has not been feasible using the exist-
ing cellular staining methods due to the use of fluorescence
reagents or fixatives. In cell culture analysis, accurate de-
tection of mitosis, or cell division, is critical for quantitative
study of cell proliferation. In this work, we present an ap-
proach that can detect mitosis within a cell population of
high cell confluence, or high cell density, which has proven
challenging because of the difficulty in separating individ-
ual cells. We first detect the candidates for birth events that
are defined as the time and location at which mitosis is com-
plete and two daughter cells first appear. Each candidate is
then examined whether it is real or not after incorporat-
ing spatio-temporal information by tracking the candidate
in the neighboring frames. For the examination, we design
a probabilistic model named Two-Labeled Hidden Condi-
tional Random Field (TL-HCRF) that can use the informa-
tion on the timing of the candidate birth event in addition to
the visual change of cells over time. Applied to two cell pop-
ulations of high cell confluence, our method considerably
outperforms previous methods. Comparisons with related
statistical models also show the superiority of TL-HCRF on
the proposed task.

1. Introduction

Computer vision for automated analysis of cell popula-
tions has gained increasing attention due to its enormous po-
tential for discoveries in cell biology and pharmacology as
well as stem cell engineering [5, 11, 6]. Among such vision-
based systems, the ones adopting phase-contrast time-lapse
microscopy allow for long-term continuous monitoring of
live and intact cells because phase-contrast microscopy is a
non-destructive imaging modality. On the other hand, cur-

Figure 1. Examples of mitotic cells in a bovine aortic endothe-
lial cell (BAEC) population in phase-contrast microscopy images.
The typical process of mitosis can be characterized by increased
brightness and circularity, and decreased size. In frame 132, we
can observe two birth events; birth event is defined as the time and
location at which two daughter cells first appear right after mitosis.

rent automated or semi-automated systems that use cellu-
lar staining methods do not permit long-term monitoring of
live cells due to the use of fluorescence reagents or fixatives,
which can cause phototoxicity or kill cells, respectively.

Mitosis is the process of cell division which is typically
shown as in Figure 1. Mitosis detection is important for as-
sessing proliferative activity of stem cells [16]. Automated
mitosis detection in phase-contrast time-lapse microscopy
can provide quantitative information regarding cell prolif-
eration on a continuous basis, which is critical for studying
biological phenomena of stem cells.

To date, several computer vision based mitosis detection
methods have been proposed. Some use results from cell
tracking [19, 2, 1, 14]. Mitotic cells are detected during
tracking by examining change in visual properties of cells
or by associating cell regions or their trajectories. These
approaches are intuitive but limited in that mitosis detection
is dependent on cell tracking, which is more challenging.
Other approaches do not involve cell tracking [3, 11, 12, 7].
Most of these methods first reduce search space by detecting
candidates that are likely to contain mitosis [3, 12, 7]. Prob-
abilistic or statistical models are often employed to identify
true mitosis among candidates by learning visual change of
mitotic cells based on human-annotated samples [11, 12, 7].
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Figure 2. Patches containing (a) positive and (b) negative birth event samples. A birth event is typically shown as a figure eight shape;
but, such a shape is often not clearly observed. Negative samples are randomly extracted where the mean and standard deviation of pixel
intensities in the patch is within the ranges of positive birth event samples.

Recently, one mitosis detection approach demonstrated
success in precisely detecting birth events that are defined as
the time and location at which mitosis is complete and two
daughter cells first appear [7]. In this approach, candidate
patch sequences are first constructed by linking the patches
with increased brightness, which is a major visual charac-
teristic of mitotic cells. A probabilistic model named Event
Detection Conditional Random Field (EDCRF) is then de-
vised to identify whether each candidate contains mitosis
or not. For the candidates determined to contain mitosis,
the birth event timing is simultaneously localized. Owing
to the effectiveness of candidate patch construction and the
discriminating power of EDCRF, this approach achieved
good performance both in birth event detection accuracy
and computational efficiency. However, as cell confluence,
or cell density, increases, this method has difficulty in sep-
arately identifying individual mitotic cells, resulting in de-
creased performance. In fact, no existing approach has been
successful at handling a cell population of high cell conflu-
ence.

To address this challenging problem, we present a mi-
tosis detection approach that can separately identify indi-
vidual mitosis in a cell population of high cell confluence
where a mitotic cell is often in contact with other mitotic
cells or non-mitotic cells with bright halos. We first de-
tect candidates of birth events by initial screening and learn-
ing visual characteristics of birth events from a single im-
age. Each candidate is then examined whether it is real af-
ter incorporating spatio-temporal information in neighbor-
ing frames. For this decision task, we develop a probabilis-
tic model named Two-Labeled Hidden Conditional Random
Field (TL-HCRF) that can model the temporal location of
the candidate birth event in addition to the visual change
of cells over time. Candidate birth event detection enables
more accurate detection of individual mitosis at high cell
confluence, resulting in significant improvement in birth
event detection compared to previous work. Furthermore,
the new model suited for the given task additionally boosts
the performance. Empirical evidence on two cell popula-
tions of high cell confluence clearly demonstrates the supe-
riority of our approach on the proposed task.

The remainder of this paper is organized as follows. We
overview our approach and describe the details of the candi-

date extraction step in Section 2. We then formulate a prob-
abilistic model to validate mitosis candidates in Section 3.
The experiments and results are presented in Sections 4 and
5, respectively, followed by conclusion in Section 6.

2. Approach
Given a sequence of phase-contrast microscopy images,

our goal is to detect birth events in the sequence. Specif-
ically, we would like to find when (in which frame) and
where (at which x and y positions) birth events occur. To
achieve this goal, we form a process consisting of three
steps: detection of candidate birth events, construction
of candidate patch sequences, and identification of birth
events, which are described in this and following sections.
Before these steps, we apply a preprocessing method [7]
to correct intrinsic illumination variation in phase-contrast
microscopy images.

2.1. Candidate Birth Event Detection

In this step, we detect candidate birth events by initial
screening and learning visual characteristics of birth events
from a single frame. The goal of this step is more to re-
duce search space. Ideally, we expect to detect all actual
birth events while detecting as few false positives as possi-
ble. In practice, sacrificing a small number of true mitosis
that are outliers in morphology or intensity often eliminates
a large number of false positives, resulting in higher overall
performance on birth event detection.

Suppose that we have a training image sequence where
all birth events are annotated and test image sequences
where we would like to detect birth events. From the train-
ing sequence, we collect square patches extracted at each
birth event as the center position as shown in Figure 2(a).
The size of a patch is set to roughly enclose one mitotic
cell. To increase the number of the positive samples as well
as to achieve rotation invariance, each patch is duplicated by
rotation at orientations 90◦, 180◦, and 270◦. Through mir-
ror reflection, additional four patches are generated; thus, a
total 8 patches are produced from one birth event.

For efficient detection of birth event candidates, we first
compute the statistics of the positive patches on intensity
distributions and changes over time. Specifically, for each
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patch P located at (x, y) in frame t, we compute the mean
and standard deviation of pixel intensities of the following
three patches:

• P

• P subtracted from the patch at (x, y) in frame t− 1

• P subtracted from the patch at (x, y) in frame t+ 1

We use these statistics to initially remove the patches that
are unlikely to contain birth events from both training and
test sequences. Specifically, if any of these statistics of a
square patch is not in the 99% confidence interval of the
corresponding statistic of the positive patches, the patch is
excluded for further consideration. Because pixel intensi-
ties increase as well as their change over consecutive frames
is considerable during mitosis, these statistics are effective
in excluding the patches not containing a birth event. These
statistics can also be efficiently calculated for every patch in
a given image through convolutions with an average filter.

To extract negative birth event patches from the train-
ing sequence, among the remaining patches after the initial
screening, we randomly select patches whose center posi-
tions are not too close to a birth event as shown in Fig-
ure 2(b). The patches close to a birth event both spatially
and temporally are excluded because they may cause confu-
sion in detecting birth events due to their similar appearance
to the positive samples. In our experiments, 30000 nega-
tive samples are randomly extracted. The rotation scheme
is not applied since the number of negative samples is large
enough. We exclude the patches whose center positions are
located within spatially 5 pixels and temporally 5 frames
from a birth event.

A Support Vector Machine (SVM) is then trained using
the positive and negative birth event samples and applied to
the patches in test sequences that have survived the initial
screening. Unique scale histograms [7] are used as visual
features. We set the decision boundary to correctly identify
99% of positive samples in the training set because the goal
of this step is to reduce search space while minimizing false
negatives. To efficiently handle a large number of training
patches, SVMlight [8] was used for implementation. Af-
ter the SVM is applied, multiple patches neighboring to a
birth event are typically determined as positive patches that
contain the birth event. Among the positive patches neigh-
boring to one another, only one patch that is located at the
centroid of the cluster is selected as the patch containing a
candidate birth event and the other patches are discarded.

This candidate birth event detection enables precise iden-
tification of birth events when they occur in the vicinity
of other cells at high cell confluence, or high cell den-
sity. Note that previous patch sequence construction meth-
ods [3, 12, 7] do not have such capability; as a result, their

Figure 3. An example of a candidate patch sequence. Each can-
didate patch sequence is constructed by tracking a candidate birth
event before and after the birth event in the sequence. In this ex-
ample, a candidate birth event is detected at time t.

performance may significantly decrease at high cell conflu-
ence.

2.2. Candidate Patch Sequence Construction

To accurately determine whether a candidate birth event
is a true birth event, temporal information should be inves-
tigated because a birth event is defined as a specific event
in mitosis, which is a process through several frames. The
information from both previous and following frames is im-
portant because it provides a clue of birth event timing when
a figure eight shape, which indicates separate two daughter
cells, lasts for several frames or is vaguely observed.

To incorporate temporal information, we construct a
candidate patch sequence by tracking each candidate birth
event forward and backward in time as shown in Figure 3.
We track candidate birth events rather than simply linking
patches at the same location in the neighboring frames be-
cause mitotic cells often move by themselves or by external
forces. For tracking, we link the nearest patches in terms
of the Euclidean distance between the pixel values within
the neighboring region in consecutive frames. In our exper-
iments, we track five frames before and two frames after a
birth event, obtaining a candidate patch sequence consisting
of eight frames for each candidate birth event. The number
of patches tracked is empirically determined based on birth
event detection performance on the training samples.

2.3. Identification of Birth Events

Now the problem reduces to determining whether each
candidate patch sequence contains an actual birth event
given the most likely temporal location of the birth event.
To solve this problem, we propose a probabilistic model
named Two Labeled Hidden Conditional Random Field
(TL-HCRF). The details of TL-HCRF will be described in
the following section. Through modeling with TL-HCRF,

1035



Figure 4. Graphical representations of two previous models (HCRF and EDCRF) and the TL-HCRF model. xi and hi represent the i-
th observation (the i-th patch in a given candidate sequence in this work) and the hidden state assigned on xi, respectively. In HCRF,
y represents mitosis occurrence. In EDCRF, y represents mitosis occurrence as well as birth event timing and sub-labels s1, · · · , sm

represent birth event timing by their transition. In TL-HCRF, y represents mitosis occurrence and determines two sublabels s1 and s2.
Another label z represents birth event timing and determines the model connectivity. Gray circles denote observed variables for training.
For testing, y and s are not observed. Note that z is observed as the timing of the candidate birth event for testing.

we can obtain the probabilities that each candidate birth
event is a real one.

After applying TL-HCRF, we need to perform postpro-
cessing to prevent duplicate detection of one birth event as
well as to localize each birth event timing. As a figure eight
shape may last for several frames, candidate birth events
typically capture not only a birth event, but also its previ-
ous or following stages. To find the most probable birth
event timing among them, we first build a graph in which
each node represents a candidate birth event. An edge is
added between two nodes if the corresponding candidate
birth events are located at a neighboring location in consec-
utive frames. We then select the candidate birth event that
has the greatest probability in each connected graph and ex-
amine whether the candidate is real or not. The other can-
didates are considered to be extracted from the previous or
following stages of the same birth event and thus ignored.

3. Two Labeled Hidden CRF
In this section, we formulate the Two Labeled Hidden

CRF (TL-HCRF) model and describe its learning and infer-
ence processes.

3.1. Related models

We review two existing probabilistic models: Hidden
Conditional Random Fields (HCRF) [17] and Event De-
tection Conditional Random Fields (EDCRF) [7], both of
which have been used for mitosis detection. The graphical
representations of these two models are shown in Figure 4.

HCRF, which was originally applied to speech and ges-
ture recognition [4, 18], has been applied to mitosis detec-
tion and demonstrated its superiority to Support Vector Ma-
chines (SVM) and Conditional Random Fields (CRF) [12].
Since HCRF has only one label variable which represents
the occurrence of mitosis, it is intrinsically not capable of
modeling birth event timing when mitosis occurs.

EDCRF was devised to additionally model birth event
timing based on the idea of HCRF. In EDCRF, the timing of
a birth event is modeled as a sub-class transition. By adding
this timing information, EDCRF is able to not only deter-
mine the timing of birth events, but also more accurately
detect mitosis occurrence than HCRF. EDCRF is, however,
not suitable for our task because it assumes that a birth event
can occur at any patch in a candidate patch sequence. In
other words, EDCRF is not designed to use the information
on candidate birth event timing, which is helpful to deter-
mine the real birth event timing.

3.2. TL-HCRF formulation

In our task, for each candidate patch sequence, we are
given the most likely timing for a birth event, which is the
timing of the candidate birth event in the sequence. To uti-
lize this information, we propose Two Labeled Hidden Con-
ditional Random Field (TL-HCRF), the graphical represen-
tations of which is shown in Figure 4.

TL-HCRF has two label variables y and z; given a se-
quence x, y indicates whether x contains a birth event and
z represents the event timing. More formally, in the training
phase,

y =

{
1 if x contains a birth event
0 otherwise

(1)

z =

{
p if the p-th patch of x contains a birth event
q if there exists no birth event in x

(2)

In the test phase, y is not observed and

z = q (3)

where the q-th patch contains a candidate birth event. In
other words, if a birth event exists in the given sequence,
z represents its timing; if a birth event does not occur or
the information is not known, z represents the timing that
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a birth event most likely occurs. Note that p is not neces-
sarily equal to q since p is determined by ground truth. q is
determined by the number of frames tracked before the can-
didate birth event in the candidate patch sequence construc-
tion step. If more than one mitosis are contained in a can-
didate patch sequence, the mitosis whose timing is closer to
the candidate birth event in the sequence is used to set p.

Suppose that x consists of m patches; i.e., x =
(x1, x2, · · · , xm) where xj denotes the j-th patch (m can
be varied for different sequences.). We assume hidden vari-
ables h = (h1, h2, · · · , hm) where hj ∈ H corresponds
to xj and H is a set of hidden states in the model. We
also assume two sub-labels s1 and s2. Given z, s1 is con-
nected with h1, h2, · · · , hz−1 while s2 is connected with
hz, hz+1, · · · , hm as shown in Figure 4. According to y,
the sub-labels s1 and s2 are set as{

s1 = N, s2 = N if y = 0
s1 = B, s2 = A if y = 1

(4)

where label N , B, and A represent No event, Before the
event, and After the event (including the event), respectively.
In other words, if there exists a birth event in a given candi-
date sequence, the patches and hidden variables before the
event are associated with a sub-label B while those after
the event with a sub-label A. Otherwise, all the patches and
hidden variables are associated with a sub-label N .

Under these definitions, we define a latent conditional
model:

P (y|x, z; θ) = P (s1, s2|x, z; θ) =
∑
h

P (h, s1, s2|x, z; θ)

(5)
where θ is a set of parameters of the model.

We define P (h, s1, s2|x, z; θ) using a log linear model
as follows:

P (h, s1, s2|x, z; θ) =
1
Z
exp(Ψ(h, s1, s2,x, z; θ)) (6)

where Z is a partition function which is defined as

Z =
∑

(s1,s2)∈
{(N,N),(B,A)}

∑
h∈Hm

exp
(
Ψ(h, s1, s2,x, z; θ)

)
(7)

We define Ψ(h, s1, s2,x, z; θ) by extending the formula-
tions of the conditional random field (CRF) and the hidden
conditional random field (HCRF).

Ψ(h, s1, s2,x, z; θ) =
m∑

j=1

f (s)(hj ,x, j) · θ(s)(hj)

+
z−1∑
j=2

f (t)(hj−1, hj ,x, j) · θ(t)(hj−1, hj , s1, s1)

+ f (t)(hz−1, hz,x, k) · θ(t)(hz−1, hz, s1, s2)

+
m∑

j=z+1

f (t)(hj−1, hj ,x, j) · θ(t)(hj−1, hj , s2, s2)

+
z−1∑
j=1

θ(l)(hj , s1) +
m∑

j=z

θ(l)(hj , s2) (8)

where f (s)(hj ,x, j) and f (t)(hj−1, hj ,x, j) are state and
transition functions, respectively. θ(s) and θ(t) are the
parameters of state and transition functions, respectively,
and θ(l) is the parameter associated with sub-labels; thus,
θ = {θ(s), θ(t), θ(l)}.

Following previous works [17, 7], state and transition
functions are defined as

f (s)(hj ,x, j) = φ(xj), f (t)(hj−1, hj ,x, j) = 1 (9)

where φ(xj) is a visual feature vector of xj . We use unique
scale gradient histograms [7] as visual features in our ex-
periments.

3.3. Learning model parameters

Suppose that n pairs of candidate patch sequences and
corresponding labels {(x1, (y1, z1)), (x2, (y2, z2)), · · · ,
(xn, (yn, zn))} are given for training. For learning parame-
ters, we maximize the following regularized log-likelihood
function [10, 9].

L(θ) =
n∑

i=1

logP (yi|xi, z; θ)−
1

2σ2
||θ||2 (10)

where σ is the variance of a Gaussian prior.
This optimization problem can be solved by gradient as-

cent methods. Let θ(s)[h] be the parameter vector in θ(s)

that corresponds to a certain hidden state h and θ
(s)
k [h]

be the k-th element of θ(s)[h]. Then, the derivative of
logP (y|x, z; θ) with respect to θ(s)k [h] is computed as

∂ logP (y|x, z; θ)
∂θ

(s)
k [h]

=
m∑

j=1

P (hj = h|s1, s2,x, z; θ)φk(xj)

−
∑

(s1,s2)∈
{(N,N),(B,A)}

m∑
j=1

P (hj = h, s1, s2|x, z; θ)φk(xj)

(11)

where φk(xj) is the k-th element of φ(xj). P (hj =
h|s1, s2,x, z; θ) can be computed by belief propaga-
tion [15] in O(m) [13].

Let θ(t)[h′, h′′, s′, s′′] be the parameter in θ(t) that corre-
sponds to two sub-labels s′ and s′′ and two hidden states h′

and h′′. Then the derivative of logP (y|x, z; θ) with respect
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to θ(t)[h′, h′′, s′, s′′] is computed as

∂ logP (y|x, z; θ)
∂θ(t)[h′, h′′, s′, s′′]

(12)

=
m∑

j=2

P (hj−1 = h′, hj = h′′|s1, s2,x, z; θ)g1(s′, s′′, j, y, z)

−
∑

(s1,s2)∈
{(N,N),(B,A)}

m∑
j=2

P (hj−1 = h′, hj = h′′, s1, s2|x, z; θ)

where g1(s′, s′′, j, y, z) is defined as

g1(s′, s′′, j, y, z) = (13)

1 if y = 0 and (s′, s′′) = (N,N)
0 if y = 0 and (s′, s′′) 6= (N,N)
0 if y 6= 0 and (s′, s′′) = (N,N)
I(j < z) if y 6= 0 and (s′, s′′) = (B,B)
I(j = z) if y 6= 0 and (s′, s′′) = (B,A)
I(j > z) if y 6= 0 and (s′, s′′) = (A,A)

where I(x) is an indicator function; i.e., I(x) is 1
if x is true, 0 otherwise. Note that when opti-
mizing the parameter for the transition function, we
consider four different sub-label transitions, namely,
(s′, s′′) ∈ {(N,N), (B,B), (B,A), (A,A)}, which repre-
sent no event, before the event, during the event, and af-
ter the event, respectively. Similar to the optimization of
θ(s), P (hj−1 = h′, hj = h′′|s1, s2,x, z; θ) can also be effi-
ciently computed by belief propagation.

Lastly, let θ(l)[h, s] be the parameter in θ(l) that corre-
sponds to a sub-labels s and a hidden states h. Then the
derivative of logP (y|x, z; θ) with respect to θ(l)[h, s] is
computed as

∂ logP (y|x, z; θ)
∂θ(l)[h, s]

(14)

=
m∑

j=1

P (hj = h|s1, s2,x, z; θ)g2(s, j, y, z)

−
∑

(s1,s2)∈
{(N,N),(B,A)}

m∑
j=1

P (hj = h, s1, s2|x, z; θ)

where g2(s, j, y, z) is defined as

g2(s, j, y, z) = (15)

1 if y = 0 and s = N

0 if y = 0 and s 6= N

0 if y 6= 0 and s = N

I(j < z) if y 6= 0 and s = B

I(j ≥ z) if y 6= 0 and s = A

Using the derivatives in Eqs. (11), (13), and (15), we can
find the optimal parameter θ∗ that maximizes the objective
in Eq. (10).

3.4. Inferences

For the i-th patch sequence in test set, in addition to
xi, we set zi to be the timing of the candidate birth event.
Therefore, we need to infer yi given xi and zi, which is a
binary classification problem. The label is determined to be

y∗i =

{
1 if P (yi = 1|xi, zi; θ∗) > 0.5
0 otherwise

(16)

This conditional distribution, which can be reformulated
by Eq. (5), can be computed by belief propagation. After
y∗i is obtained for each i-th patch, we perform the postpro-
cessing described in the previous section to finalize detected
birth events.

4. Experiments

We tested mitosis detection algorithm on two stem cell
populations of high cell confluence: C2C12 myoblastic
stem cells (C2C12) and bovine aortic endothelial cells
(BAEC).

4.1. Data and Ground truth

For C2C12 and BAEC sequences, images were acquired
every 5 minutes for approximately 84 and 19 hours, obtain-
ing 1013 and 228 images, respectively.1 Manual annotation
of birth events was performed on both image sequences. For
each birth event, the center of the boundary between two
daughter cells was marked when the boundary is first clearly
observed. As a result, 673 and 422 mitotic events were an-
notated in the C2C12 and BAEC sequences, respectively.
In addition, we manually tracked each mitotic cell for three
frames both before and after the birth event to include the
case that a birth event is detected with a small timing error
less or equal to three frames.

For both C2C12 and BAEC sequences, we tested our ap-
proach on the last 100 frames, and the rest frames were used
for model training. Assessed by two biologists, the last
100 frames of C2C12 start with a confluence of 65∼75%
and end with a confluence of 80∼90% while the BAEC se-
quence is at 100% confluence from the beginning to the end.

1In detail, for C2C12, during the growth of stem cells, microscopy cell
images were acquired using a Zeiss Axiovert T135V microscope (Carl
Zeiss Microimaging, Thornwood, NY) equipped with a 5X, 0.15 N.A.
phase-contrast objective, a custom-stage incubator, and the InVitro soft-
ware (Media Cybernetics Inc., Bethesda, MD). For BAEC, the open area,
or wound area, in each dish is observed with a Leica DMI 6000B inverted
microscope equipped with a 10X objective with phase optics until neigh-
boring cells completely fill.
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Threshold th=1 th=3
Approach [7] Our approach [7] Our approach

C2C12 F-measure 0.746 0.800 0.794 0.845
(Precision/Recall) (0.755/0.738) (0.883/0.731) (0.803/0.786) (0.933/0.772)

AUC 0.672 0.706 0.758 0.761
Threshold th=1 th=3
Approach [7] Our approach [7] Our approach

BAEC F-measure 0.351 0.716 0.372 0.761
(Precision/Recall) (0.454/0.286) (0.796/0.650) (0.480/0.303) (0.847/0.692)

AUC 0.253 0.669 0.281 0.751

Table 1. Mitosis detection performance comparison between the previous approach [7] and the proposed approach on C2C12 and BAEC in
terms of F-measure and AUC of the PR-curve. Detection results are considered true positive when the timing error in terms of the number
of frames is not greater than a given threshold (th=1 or 3). Our approach outperforms the previous approach, particularly on BAEC, which
shows much higher cell confluence than C2C12.

4.2. Evaluation and Comparison

To measure the performance of our approach, we com-
pute precision and recall on the conditions of birth event
location and timing. Specifically, if a birth event is detected
spatially within 10 pixels and temporally within th frames
(th is one of 1 and 3 in our experiments) from the man-
ual annotation, it is considered correctly detected (true pos-
itive). A small timing error is allowed because there is a
few frames’ variation even among human annotations. If a
detection result does not satisfy these conditions, the detec-
tion is regarded incorrect (false positive). If one birth event
is detected more than once, the detection results except the
one closest to the birth event are considered incorrect (false
positive).

We compare our approach with the previous work [7],
which constructs candidate patch sequences by threshold-
ing brightness without the candidate birth event detection
step. To the best of our knowledge, [7] is the only work
that explicitly detects birth events during mitosis. We also
compare our TL-HCRF model with HCRF [18] and ED-
CRF [7] on the task that classifies candidate patch se-
quences whether each of them contains a birth event or not.
To compare the detection results, we compute F-measure,
which is the harmonic mean of precision and recall, and the
area under the curve (AUC) of the precision-recall curve
(PR-curve). PR-curves are obtained by varying the decision
probability in Eq. (16).

5. Results
Our approach significantly outperforms the previous ap-

proach [7] in terms of F-measure and AUC of the PR graph
as shown in Table 1. In particular, performance improve-
ment is significant on BAEC which is at 100% confluence
from the beginning to the end. The low performance of the
previous approach on BAEC clearly indicates that it is chal-
lenged by high cell confluence. In cell populations of high
cell confluence, where cells are closer to each other, mitotic

cells are often in contact with other mitotic cells or non-
mitotic cells with bright halos. In such cases, the candidate
patch construction scheme used in the previous work tends
to identify such clustered cells as one entity rather than dis-
cerning each of them as an individual entity. As a result,
the accuracy of birth event detection in terms of both oc-
currence and timing is hampered. On the other hand, the
proposed candidate patch sequence construction scheme is
more capable of detecting each individual cell because each
candidate birth event, which typically shows a figure eight
shape, is first detected by a learning-based method. Can-
didate birth event detection preceding candidate patch se-
quence construction significantly reduces false negative or
undetected mitosis compared to the previous work.

Table 2 shows that TL-HCRF outperforms the previous
two models, HCRF and EDCRF, on the proposed task. To
produce these results, we replaced TL-HCRF with HCRF or
EDCRF without changing any other settings. HCRF is in-
ferior to TL-HCRF on the given task because HCRF is not
designed to use the information on birth event timing. The
higher performance of HCRF than EDCRF on C2C12 can
be ascribed to the postprocessing step, which finds the most
probable birth event timing based on the confidence levels
of candidate birth events neighboring to one another. ED-
CRF can model the timing of a birth event, but it assumes
that a birth event can occur at any patch rather than referring
to candidate birth event timing. Therefore, in our frame-
work which involves candidate birth event detection, ED-
CRF has excessive modeling power than necessary, which
is realized by sub-labels assigned on each observation. To
make the inference of all sub-labels tractable, EDCRF re-
stricts that each sub-class label is associated only with hid-
den states in a disjoint set [7], which may degrade the over-
all performance. Unlike these two previous models, TL-
HCRF has appropriate modeling power for the given task
by assuming that a birth event occurs at the candidate birth
event patch if mitosis occurs; as a result, TL-HCRF does
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C2C12 myoblastic stem cells (C2C12)
Threshold th=1 th=3

Model HCRF EDCRF TL-HCRF HCRF EDCRF TL-HCRF
F-measure 0.679 0.643 0.800 0.793 0.765 0.845

(Precision/Recall) (0.704/0.655) (0.674/0.614) (0.883/0.731) (0.822/0.766) (0.803/0.731) (0.933/0.772)
AUC 0.578 0.529 0.706 0.724 0.689 0.761

Bovine aortic endothelial cells (BAEC)
Threshold th=1 th=3

Model HCRF EDCRF TL-HCRF HCRF EDCRF TL-HCRF
F-measure 0.613 0.647 0.716 0.685 0.726 0.761

(Precision/Recall) (0.622/0.604) (0.641/0.654) (0.796/0.650) (0.695/0.675) (0.718/0.733) (0.847/0.692)
AUC 0.503 0.573 0.669 0.622 0.699 0.751

Table 2. Mitosis detection performance comparison among the three probabilistic models: HCRF, EDCRF, and TL-HCRF on C2C12 and
BAEC in terms of F-measure and AUC of the PR-curve. For this comparison, each model is applied for the binary classification of candidate
patch sequences generated by our proposed approach. Detection results are considered true positive when the timing error of birth event is
not greater than a given threshold (th=1 or 3). TL-HCRF outperforms the other two previous models in terms of both F-measure and AUC.

not require additional restrictions, achieving the best per-
formance.

6. Conclusion
In this paper, we present an effective method that can

detect mitosis in a cell population of high cell confluence,
which has proven challenging due to the difficulty in iden-
tifying individual cells. We propose a method that de-
tects the candidates of the time and location at which two
daughter cells first appear, which enables separate detec-
tion of mitotic cells. We also design a new probabilistic
model named Two-Labeled Hidden Conditional Random
Field (TL-HCRF) that can examine each candidate whether
it is real or not after incorporating spatio-temporal infor-
mation. Experimental results on two stem cell populations
clearly demonstrate that our method considerably outper-
forms previous methods for mitosis detection in a stem cell
population of high cell confluence.
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