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a b s t r a c t

Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images
to monitor the behavior of transparent cells without staining or altering them. Due to the optical princi-
ple, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image
segmentation, a critical step in automated microscopy image analysis. Rather than treating phase con-
trast microscopy images as general natural images and applying generic image processing techniques
on them, we propose to study the optical properties of the phase contrast microscope to model its image
formation process. The phase contrast imaging system can be approximated by a linear imaging model.
Based on this model and input image properties, we formulate a regularized quadratic cost function to
restore artifact-free phase contrast images that directly correspond to the specimen’s optical path length.
With artifacts removed, high quality segmentation can be achieved by simply thresholding the restored
images. The imaging model and restoration method are quantitatively evaluated on microscopy image
sequences with thousands of cells captured over several days. We also demonstrate that accurate resto-
ration lays the foundation for high performance in cell detection and tracking.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Long-term monitoring of living specimens’ behavior without
staining or altering them has a wide range of applications in bio-
logical discovery (Meijering et al., 2009; Rittscher, 2010). Since
transparent specimens such as living cells generally lack sufficient
contrast to be observed using common light microscopes, the
phase contrast imaging technique (Zernike, 1955) was invented
to convert the minute light phase variations caused by specimens
into changes in light amplitude that can be observed by naked eyes
or cameras. Due to the optical principle and some imperfections of
the conversion process, phase contrast microscopy images contain
artifacts such as the bright halo surrounding the specimen and
shade-off (the intensity profile of a large specimen gradually in-
creases from the edges to the center, and even approaches the
intensity of the surrounding background medium), as shown in
Fig. 1a. Over time, biologists have learned how to overcome or even
exploit those artifacts for interpreting phase contrast images.
When computer-based microscopy image analysis began to relieve
humans from tedious manual labeling (House et al., 2009; Li et al.,
2008; Smith et al., 2008; Yang et al., 2005), those artifacts pre-
sented significant challenges to automated image processing. In

particular, they hinder the process of segmenting images into cells
and background, which is the most critical step in almost all cell
image analysis applications.

In the past, many microscopy image segmentation methods
have been proposed; for example, thresholding on local intensity
value and variation has a long history on cell image segmentation
(Otsu, 1979; Wu et al., 1995). The Otsu method calculates the opti-
mal threshold separating the image into two classes such that their
intra-class variances are minimal. As shown in Fig. 1b, the halo pix-
els are classified as one class after Otsu thresholding, and the cell
and background pixels are classified as the second class, which is
not a satisfactory segmentation result. Realizing the halo artifact
in phase contrast images, we can develop a multi-level Otsu thres-
holding method to segment images into three classes: inner dark
cell regions, background and halo. However, as shown in Fig. 1c,
the cells are still not well segmented because of the shade-off
artifact (intensity similarities between the cell and background
classes). House et al. (2009) and Li et al. (2008) explored edge
detection and morphology tools to segment cell images. However,
if the contrast between cell and background pixels is low, the edge
detection and morphological operations might fail the segmenta-
tion task as shown in Fig. 1d. Level-set and marker-controlled wa-
tershed are two typical gradient-based algorithms used in cell
image segmentation (Li et al., 2008; Yang et al., 2005), but these
methods are sensitive to local large gradients from the background,
as shown in Fig. 1e and f. The performance of level-set and
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marker-controlled watershed also relies on their initializations.
Using the halo artifact of phase contrast images, Laplacian-of-
Gaussian (LoG) filter is used to detect object blobs (Smith et al.,
2008). However, applying a LoG kernel onto a microscopy image
containing cells of different sizes, orientations and deformable
shapes might not generate satisfactory blob detection results. Dif-
ferent LoG kernels (e.g., different variances in the LoG) may detect
different numbers of cells for the same image, as shown in Fig. 1g
and h. Furthermore, the irregular cell boundaries cannot be well lo-
cated in LoG-filtered images.

The previous microscopy image segmentation methods do not
consider the image formation process of microscopy images and
treat them in the same manner as natural images. However, there
are apparent differences between natural images and phase con-
trast microscopy images, such as the halo and shade-off. Because
of these artifacts, the observed microscopy image intensity does
not exactly correspond to the specimen’s Optical Path Length
(OPL, product of refractive index and thickness). Li and Kanade
(2009) proposed an algebraic framework for preconditioning
microscopy images captured under Differential Interference Con-
trast (DIC) microscopes. They use a directional Difference-of-Gauss-
ian kernel to approximate the DIC image formation process and
precondition an input DIC image via a linear imaging model. This
inspired us to think about whether understanding the phase con-
trast optics at an early stage will help segment phase contrast
images. In fact, we found that those phase contrast artifacts can
be well modeled by the optical properties of the image formation
process in the phase contrast microscope imaging system. In this
paper, we derive a linear imaging model corresponding to the phase
contrast optics and formulate a quadratic optimization function to
restore the ‘‘authentic’’ phase contrast image without halo or
shade-off artifacts. With artifacts removed, high quality segmenta-
tion can be achieved by simply thresholding the restored images.

2. Understanding the phase contrast optics

The optical system of a common bright field microscope is
shown in Fig. 2a. The light from an illumination source is focused
on a specimen plate by a condenser. The light wavefronts illumi-

nate the specimen and divide into two components: one compo-
nent passes through and around the specimen without deviation
(the S wave); and, the other component is diffracted, attenuated
and retarded because of the specimen (the D wave). A typical phase
retardation caused by living cells in tissue culture is a quarter wave
length (Murphy, 2001). The two waves enter the objective lens and
combine through interference to produce the particle wave (the P
wave) that represents cell pixels in the image. Observing the spec-
imen in a microscopy image depends on the intensity difference
between the specimen and its surrounding background, i.e. the
amplitude difference between the particle (P) and surround (S)
waves. Without any phase contrast technique, the P and S waves
have nearly the same wave amplitudes as shown in Fig. 2b, thus
the specimen is invisible under a bright field microscope.

Compared to the common bright field microscope, phase con-
trast microscope adds a conjugate pair of condenser annulus and
phase plate into its optical system. As shown in Fig. 3a, the special-
ized annulus is placed at the front focal plane of the condenser and
the phase plate is at the rear focal plane of the objective lens (Note:
in Fig. 3a, we exaggerate the distance between the phase plate and
the virtual intermediate image plane for a clear illustration. In fact,
they are very close along the optical axis.) The annulus filters the
light from the illumination source such that the specimen is actu-
ally illuminated by annular lighting. The phase plate of a positive
phase contrast microscope has an etched ring with reduced thick-
ness to advance the surround wave by a quarter wavelength, and it
also has a partially absorbing metallic film to attenuate the sur-
round wave. The diffracted wave (D) that is attenuated and re-
tarded by the specimen spreads over the phase plate. Most of the
D wave passes through the phase plate without being affected by
the phase ring, and it interferes with the surround wave to form
the particle wave. As shown in Fig. 3b, with the positive phase con-
trast technique, the surround wave is advanced and attenuated by
the phase ring, and the amplitude difference between the P and S
waves is now observable. Furthermore, because the amplitude of
the P wave is smaller than that of the S wave, the specimen appears
dark on a bright background.

Unfortunately, the specimen diffracts the illuminating light to
every direction, and a small portion of the diffracted wave leaks

Fig. 1. Cell segmentation and detection by traditional image processing methods. (a) Input phase contrast image; (b) two-class Otsu thresholding; (c) three-class Otsu
thresholding; (d) edge detection and morphology tools (from Mathworks product demo: detecting a cell using image segmentation); (e) marker-controlled watershed; (f)
level-set; (g) LoG filtering (the red crosses denote centroids of detected blobs in the filtered image); (h) LoG filtering with a larger variance r in the filter. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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into the phase ring (Fig. 4a). The leaking D wave is advanced and
attenuated by the phase ring, and the actual P wave is the interfer-
ence of three components: S wave, D wave and the leaking D wave.
As shown in Fig. 4b, most of the P wave has smaller amplitude than
the background S wave so the specimen looks dark. However, a
small part of the P wave has larger amplitude than the S wave,
which causes the bright halo and shade-off artifacts.

3. Deriving the phase contrast microscopy imaging model

Following the optical principle of the phase contrast micro-
scope, we derive its computational imaging model in this section.
We assume the illuminating waves arrive at the specimen plate
with the same amplitude and phase, and denote them as

lðxÞ ¼ Aeib ð1Þ

where x ¼ xr
j ;x

c
j

� �
; j ¼ 1; . . . ; J

n o
denote 2D locations (row and col-

umn) of total J image pixels on the specimen plate, i2 = �1, A and b

are the illuminating wave’s amplitude and phase before hitting the
specimen plate.

After illuminating waves pass through the specimen plate, they
divide into two components: the unaltered surround wave lS(x)
and the diffracted wave lD(x) that is attenuated and retarded by
the specimen

lSðxÞ ¼ lðxÞ ¼ Aeib ð2Þ
lDðxÞ ¼ fce�if ðxÞlðxÞ ¼ fcAeiðb�f ðxÞÞ ð3Þ

where fc is the amplitude attenuation factor and f(x) represents
phase shift caused by the specimen at location x. Our goal is to re-
store f(x), the ‘‘authentic’’ phase contrast image corresponding to
the specimen’s optical path length without artifacts.

A thin lens with a large aperture essentially performs a spatial
Fourier transform (F ) on the waves from its front focal plane to
its rear focal plane (Gaskill, 1978). Thus, after the surround and dif-
fracted waves pass the objective lens, the waves in front of the
phase plate are

Fig. 2. Bright field microscope optics and wave interference. Some of the illuminating waves on the specimen are diffracted, attenuated and retarded (referred to as the D
wave). The amplitude difference between the particle (P) and surround (S) waves is too small such that the specimen is transparent and invisible to human eyes.

Fig. 3. Phase contrast microscope optics and wave interference. The phase plate separates the surround and diffracted waves, and the surround wave is advanced and
attenuated by the phase ring.
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LSðwÞ ¼ FðlSðxÞÞ ð4Þ
LDðwÞ ¼ FðlDðxÞÞ: ð5Þ

The phase plate functions as a band-pass filter. For the non-dif-
fracted surround wave, the positive phase ring attenuates the wave
amplitude and advances its phase by a quarter wave length (p/2),
thus the corresponding transmittance function for the surround
wave is

TSðwÞ ¼ fpeip2 ¼ ifp ð6Þ

where fp represents the amplitude attenuation by a phase ring with
outer radius R and width W (Fig. 3a, R and W are provided by micro-
scope manufacturers). The diffracted wave spreads over the phase
plate with a small portion leaking into the ring. Its corresponding
transmittance function is a band-pass filter

TDðwÞ ¼
ifp if R�W 6 wr 6 R

1 otherwise

�
ð7Þ

which can be re-written as

TDðwÞ ¼ 1þ ðifp � 1Þ cyl
wr

R

� �
� cyl

wr

R�W

� �h i
ð8Þ

where wr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

u þw2
v

p
is the radial frequency and cyl (�) is a 2D cyl-

inder function

cylðwÞ ¼
1 if 0 6 w 6 1
0 otherwise:

�
ð9Þ

After the band-pass filtering, we have the waves after the phase
plate as

eLSðwÞ ¼ LSðwÞTSðwÞ ð10ÞeLDðwÞ ¼ LDðwÞTDðwÞ: ð11Þ

The ocular lens perform another Fourier transform. Mathemat-
ically, the forward and inverse Fourier transforms are identical ex-
cept for a minus sign, and thus, applying Fourier transform oneLSðwÞ and eLDðwÞ is equivalent to applying inverse Fourier trans-
form on them with a minus sign on the input variable of the resul-
tant function. The waves after the ocular lens are

~lSðxÞ ¼ lSðxÞ � tSðxÞ ð12Þ
~lDðxÞ ¼ lDðxÞ � tDðxÞ ð13Þ

where ⁄ denotes the convolution operator. tS(�) and tD(�) denote the
inverse Fourier transform of TS(�) and TD(�), respectively. The inverse
Fourier transform of TS(�) (Eq. (6)) is

tSðxÞ ¼ ifpdðxÞ ð14Þ

where d(�) is a Dirac delta function. The inverse Fourier transform of
TD(�) (Eq. (8)) is (Appendix A)

tDðxÞ ¼ dðrÞ þ ðifp � 1ÞairyðrÞ ð15Þ

where airy (r) is an obscured Airy pattern (Born and Wolf, 1980) as
shown in Fig. 5 where a bright region in the center is surrounded by
a series of concentric alternating bright/dark rings.

Substituting lS, tS, lD, tD into ~lS and ~lD in Eqs. (12) and (13), we get

~lSðxÞ ¼ ifpAeib ð16Þ
~lDðxÞ ¼ fcAeiðb�f ðxÞÞ þ ðifp � 1ÞfcAeiðb�f ðxÞÞ � airyðrÞ ð17Þ

The first term in Eq. (17) is the primary component of the diffracted
wave that destructively interferes with the non-diffracted surround
wave and generates the contrast for human observation. The second
term in Eq. (17) comes from the diffracted wave leaking into the
phase ring which causes the halo and shade-off artifacts. The inten-
sity of the final observed image is computed as (Appendix B)

gðxÞ / ðdðrÞ � airyðrÞÞ � f ðxÞ þ C ð18Þ

where C is a constant. The convolution kernel in Eq. (18) represents
the point spread function (PSF) of the phase contrast microscope

PSFðu;vÞ ¼ dðu;vÞ � airyð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ ð19Þ

which is a linear operator. Note, in the positive phase contrast
microscope, cells appear darker than the surrounding medium.
However, in negative phase contrast microscope (surround wave
is retarded instead of being advanced), cells appear brighter than
the surrounding medium. The corresponding PSF for the negative
phase contrast is

Fig. 4. A small portion of diffracted light leaking into the phase ring causes the halo and shade-off artifacts.

Fig. 5. An obscured Airy pattern. (a) 3D surface view; (b) 2D view.
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PSFðu;vÞ ¼ airyð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ � dðu; vÞ ð20Þ

In our restoration framework, we use Eq. (20) for both positive and
negative phase contrast microscopes such that in restored images,
cells are bright while background is dark.

Now we can define the linear imaging model between g (vector-
ized observed image) and f (vectorized artifact-free phase contrast
image to be restored) as

g � Hf þ C ð21Þ

In practice, we discretize the PSF kernel as a (2M + 1) � (2M + 1)
matrix (e.g. M = 5) and the H matrix is defined by

ðHfÞj ¼
X2Mþ1

u¼1

X2Mþ1

v¼1

PSFðu;vÞf xr
j þ u�M; xc

j þ v �M
� �

ð22Þ

where x ¼ xr
j ;x

c
j

� �
; j ¼ 1; . . . ; J

n o
denote 2D locations (row and col-

umn) of total J image pixels on the specimen plate. Eq. (22) indi-
cates that the jth element of multiplying f by H is defined by the
convolution of the PSF kernel on the image f around pixel location

xr
j ;x

c
j

� �
. Each row of H has only (2M + 1) � (2M + 1) nonzero ele-

ments corresponding to the PSF kernel, thus H is a J � J symmetric
sparse matrix.

4. Restoring artifact-free phase contrast images

Now that the phase-contrast microscopy imaging model is
established, as in Eq. (21), we develop procedures in this section
to restore f from g.

4.1. Background estimation and subtraction

The first step is to remove the background C from g in Eq. (21).
Ideally, the background C should be a constant for every pixel loca-
tion. However, that is not true in reality due to the lens aberration.
We model C by a second-order polynomial surface

Cðu;vÞ ¼ k0 þ k1uþ k2v þ k3u2 þ k4uv þ k5v2 ð23Þ

Based on the background pixels of an observed image, gC(u,v), we
have the following over-determined linear system,

..

.

gCðu;vÞ
..
.

2
6664

3
7775 ¼

..

. ..
. ..

. ..
. ..

. ..
.

1 u v u2 uv v2

..

. ..
. ..

. ..
. ..

. ..
.

2
6664

3
7775

k0

..

.

k5

2
664

3
775 ð24Þ

and denote it as

gC ¼ Ak ð25Þ

To estimate the polynomial coefficient vector k from Eq. (25), we
need to know the background pixels gC, but the background pixels
are unknown until the segmentation is done. To handle this dilem-
ma, we treat all observed pixels as background pixels (i.e. gC g)
and estimate k by a least-square solution

k� ¼ ðAT AÞ�1AT g ð26Þ

We could refine this background estimation after we obtain the res-
toration and segmentation result and reiterate the processes. How-
ever, based on our experiments, there is no obvious improvement
gained from the iterative process, because we estimate k from an
over-constrained system (e.g., for a 1000 � 1000 image, we have 1
million equations to estimate 6 coefficients in Eq. (24).) Therefore,
we use all pixels in an observed image for background estimation
without iterative refinement. Given an observed image, we com-
pute the background as C = Ak⁄, and remove it from the observed
image, i.e. g g � C. Thus, the new imaging model is

g ¼ Hf ð27Þ

Fig. 6 shows an example of the background estimation. Note that
after the background subtraction, the image can have both positive
and negative values.

4.2. Restoration algorithm

The second and major step is to solve f from Eq. (27). An at-
tempt to solve it by simply inversing H is known to be highly
noise-prone as shown in Fig. 7b. Instead, we formulate the follow-
ing constrained quadratic function to restore f

OðfÞ ¼ kHf � gk2
2 þxsf

T Lf þxrkKfk1 ð28Þ

where L is a Laplacian matrix defining the similarity between spa-
tial pixel neighbors, and K is a positive diagonal matrix defining

Fig. 6. The top row shows the observed image, its background estimation and image after background subtraction, respectively. The bottom row shows the profiles of the
middle rows of those images in the top row.
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the l1-norm sparseness regularization. L and K are further
explained in Section 4.3. The weighting factors on different regular-
ization terms (xs and xr) are to be learned by grid-search.

If given an observed sequence of N images, {g(t)}t=1,. . .,N, we re-
store the artifact-free sequence, {f(t)}t=1,. . .,N, by considering the
temporal consistency between consecutive images (Yin and
Kanade, 2011). The objective function is1

OðfÞ ¼ kHf � gk2
2 þxsf

T Lf þxrkKfk1 þxtðf � fðtÞÞTRðf � fðtÞÞ
ð29Þ

where R is a matrix defining the similarity between temporal pixel
neighbors, and xt is the weighting factor on the temporal consis-
tency regularization.

It is well-known that l1-norm is better than l2-norm for sparse-
ness regularization (Kim et al., 2007), but there is no closed-form
solution to f in Eq. (29) and only numerical approximation is
achievable. We constrain the restored f to have nonnegative values
and convert Eq. (29) to the following optimization problem

OðfÞ ¼ fT Qf þ 2bT f þ c s:t: f P 0 ð30Þ

where

Q ¼ HT HþxsL þxtR ð31Þ
b ¼ �HT g�xtR

T fðtÞ þxrdiagðKÞ=2 ð32Þ

We propose an iterative algorithm to solve f in Eq. (30) by non-
negative multiplicative updating (Eq. (33), Sha et al., 2007). Re-
weighting (Eq. (34), Candes et al., 2008) is an option to accelerate
the convergence process.

Algorithm 1. restoring artifact-free microscopy images

Initialize f = finit and K = Kinit.
Repeat the following steps for all pixel j

b ¼ �HT g�xtR
T fðtÞ þxrdiagðKÞ=2

f j  f j

�bj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

j þ 4ðQþfÞjðQ
�fÞj

q
2ðQþfÞj

ð33Þ

Kjj  
Kinit

jj

f j þ �
ð34Þ

Until convergence.

where � is a small constant to avoid divide-by-zero, diag (K)
denotes the diagonal vector of matrix K, and

Qþuv ¼
Q uv if Q uv > 0
0 otherwise

�
and Q�uv ¼

jQ uv j if Q uv < 0
0 otherwise

�
ð35Þ

Kinit is the sparse regularization defined by input image properties
(Section 4.3) and finit is the initialization obtained from a look-up ta-
ble (Section 4.4). Note, when restoring a single phase contrast image,
we drop the terms related to temporal consistency in Q and b.

4.3. Regularizations defined by image properties

In a time-lapse microscopy image sequence, neighboring pixels
are linked in both spatial and temporal domains, we define the
similarity between spatial neighbors as

Wmn ¼ e�ðgm�gnÞ2=r1 ð36Þ

where gm and gn denote intensities of neighboring pixels m and n,
and r1 is the mean of all possible (gm � gn)2’s in the image. The spa-
tial smoothness regularization in Eq. (29) is defined as

fT Lf ¼
X

m;n2XðmÞ
Wmnðfm � fnÞ2 ð37Þ

where X(m) denote the spatial 8-connected neighborhood of pixel
m. Explicitly, we compute L = D �W where Dmm ¼

P
nWmn.

We define the similarity between two neighboring pixels in the
temporal domain as

Rmm ¼ e� gm�gðtÞmð Þ2
�

r2 ð38Þ

where gðtÞm denotes the intensity of pixel m in the previous time in-

stant, and r2 is the mean of all possible gm � gðtÞm

� �2
’s between two

consecutive images. Each pixel in the current image can be con-
nected to nine temporal neighbors in the previous frame. The regu-
larization terms on spatial and temporal smoothness enforce
neighboring pixels with similar observed values to have similar val-
ues in the restored image.

The sparsity regularization in Eq. (29) penalizes large values in a
restored artifact-free image. Ideally, all the background pixels
should have zero values, while cell pixels have positive values. In
(Li and Kanade, 2009; Yin et al., 2010b), the sparseness is imple-
mented by initializing K as a constant at the beginning (i.e., Kini-

t = I) and re-weight it in the iterative process by

Kjj  
1

f j þ �
: ð39Þ

Rather than blindly enforcing the sparseness over all pixels, we
tune the sparsity regularization term according to image properties
such as the spatial image frequency. First, we apply the 2D Fourier
transform, F , on image g

Fig. 7. Restoration without constraints. (a) Input phase contrast image; (b) restored image.

1 To simplify notation, we denote f as the image to be restored at time t + 1,g as the
image observed at time t + 1, and f(t) as the restored image at time t.
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G ¼ FðgÞ: ð40Þ

G is an image with complex values where the magnitude, AðGÞ, tells
how much of a certain frequency component appears, and the
phase, PðGÞ, indicates where the frequency component is in the
image. Then, we apply a high pass filter on the frequency magnitude
to get A0ðGÞ (i.e., set all frequency components below a cutoff fre-
quency to zero.) Finally, we transform back to the spatial domain
by inverse 2D Fourier transform

g0 ¼ F�1ðA0ðGÞeiPðGÞÞ: ð41Þ

Fig. 8b shows the high pass filtering on Fig. 8a, where bright regions
represent high frequency components corresponding to possible
cell pixels. We define the initial sparsity matrix by

Kinit ¼ diagðe�g0 Þ ð42Þ

and also use it in the re-weighting step (Eq. (34)). Using this sparsity
regularization in the cost function, the lower frequency regions cor-
responding to background pixels are penalized more than higher
frequency components corresponding to cell pixels.

4.4. Initialization inferred from a look-up table

To solve the nonnegative quadratic problem in Eq. (30), a good
initialization close to the optimal solution will help the iterative
process converge fast. Rather than using the constant initialization
as in (Li and Kanade, 2009; Yin et al., 2010b), we build a look-up
table to infer a closer initialization. Given a training sequence,
g’s, we run Algorithm 1 with finit = 1 and restore a sequence of
f’s. Then, we calculate a histogram hðgj; j _gjj; f jÞ over every pixel
based on the observed image intensity gj, image gradient magni-
tude j _gjj and restored fj value. The look-up table is computed as

Tblðgj; j _gjjÞ ¼ arg max
fj

hðgj; j _gjj; f jÞ: ð43Þ

Fig. 8c shows the computed look-up table from a training phase
contrast sequence where the positive f values (scattered bright
regions in Fig. 8c) concentrate on entries with low intensity obser-
vations and a wide range of gradient observations. This phenome-
non is commonly observed in positive phase contrast images
where cell pixels appear dark with varied local gradients. Based
on this look-up table, for every pixel j in an image g to be restored,
we infer the initialization as f init

j ¼ Tblðgj; j _gjjÞ. Note, if f init
j is zero,

we set it to a small positive constant to avoid being stuck at zero
in Eq. (33). The inferred initialization for Fig. 8a is shown in Fig. 8d.
It is close to the optimal solution except for some isolated cell
regions and background noise.

Basically, the look-up table is equivalent to solving a single glo-
bal maximum-a-posterior problem

arg max
fj

pðf jjðgj; j _gjjÞÞ: ð44Þ

Other soft-segmentation methods such as a bag of local Bayesian
classification (Yin et al., 2010a) can be adopted here to provide an
initialization for our iterative restoration process.

5. Experiments

In this section, we first validate our imaging model in Section
5.1. Then, we perform quantitative evaluation of segmentation in
Section 5.2, and compare our restoration-based segmentation
method with other approaches in Section 5.3. We discuss the ef-
fects of our imaging model and different regularization terms in
Section 5.4. We show how our restoration results can facilitate cell
detection and tracking in Section 5.5.

Fig. 8. Regularization terms adapted to input image properties and a better initialization for the iterative restoration algorithm. (a) Input phase contrast image; (b) sparseness
regularization by spatial image frequency analysis; (c) a look-up table for initializing the iterative algorithm; (d) the inferred initialization.
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5.1. Evaluating the imaging model for restoration

In this subsection, we validate the imaging model we used for
restoration. We measure the specimens’ Optical Path Length
(OPL, the product of physical thickness and refractive index) by
restoring the specimens’ phase contrast microscopy images using
our imaging model, and compare the computed measurements
with the specimens’ ground truth on OPL. The specimens chosen
for evaluation are polymer microspheres (beads) bought from
Bangs Laboratories, Inc. (www.bangslabs.com) with known diame-
ter and refractive index. The diameter of these manufactured beads
is within a small range of 9.77 lm ± 0.85 lm. We captured phase
contrast microscopy images of these beads in a 35 mm matek glass
bottom dish under the same culture condition as our biological cell
experiments. The specifications of beads and imaging conditions
are summarized in Table 1.

Fig. 9a shows a phase contrast microscopy image of the beads
where most beads appear as dark regions surrounded by bright ha-
los. The beads that float in the dish fluid instead of adhering to the
dish bottom appear brighter because they are out-of-focus during
imaging (e.g., the bead near the left image boundary of Fig. 9a).
Fig. 9b shows the image restored using our imaging model where
the intensities of the bright pixels correspond to the beads’ OPL.
Since the ground truth of a bead cluster is complicated by light
refraction and diffraction due to clustering, we only perform eval-

uation on isolated beads and compare them to the ground truth.
Fig. 9c shows the detected isolated beads by using a binary tree
classifier on the area and intensity features of restored bright blobs
in Fig. 9b.

The scale bar of our phase contrast image is 1 pixel = 1.3 lm,
and we convert all the physical parameters from lm to the unit
of pixel as summarized in Table 2. Since the refractive index of
the bead is a constant (1.59), we also represent the microsphere’s
OPL (the product of the physical distance along the optical path
and the refractive index) in terms of pixels. The ground truth OPL
of a microsphere (bead) computed using the mean diameter is
shown in Fig. 10a where the unit is a pixel. In the restored image
(Fig. 9b), we extract sub-images around isolated beads and com-
pute the mean of these sub-images which corresponds to the real
measurement of a bead’s OPL as shown in Fig. 10b.

The absolute error between the computed measurement and
ground truth OPL (jOPLReal measurement � OPLGround truthj) is shown in
Fig. 11a. Over all pixel locations of the bead, the maximum abso-
lute error is 1.06 pixel and the mean absolute error is 0.16 pixel,
demonstrating the high accuracy of our restoration (Note: Since
no sub-pixel technique is applied here, the highest achievable pre-
cision of an imaged-based measurement is 1 pixel.) From Fig. 11a,
we also note that the maximum error occurs around a bead’s
peripheral regions. This is because of the more complex light dif-
fraction and deflection around the peripheral regions compared
to the inner microsphere regions. Fig. 11b shows the OPL along
the bead’s middle horizontal profile. The thick solid black curve
represents the ground truth OPL computed using the bead’s mean
diameter. The two thin solid black curves represent the ground
truth OPL computed using the bead’s mean diameter ± standard
deviation. The band between the two thin solid black curves define
the range of ground truth OPL on each pixel location (Note: The
ground truth OPL has a standard deviation because of the

Table 1
Specifications of the beads and imaging conditions.

Specifications

Beads Catalog code on bangslab.com PC06N
Material Polystyrene carboxyl
Mean diameter (l) 9.77 lm
Std dev (r) 0.85 lm
Refractive index (n) 1.59

Imaging Microscope Axiovert 135TV
Magnification 5X
Exposure 113 ms
Phase ring outer radius (R) 6.1 mm
Phase ring width (W) 1.2 mm

Fig. 9. Restoring phase contrast microscopy images of beads. (a) A phase contrast image of tiny beads; (b) the restored artifact-free image; (c) the isolated beads (yellow) are
chosen for evaluation while the bead clusters and floating beads (green) are not considered. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Unit conversion.

Bead diameter l Bead diameter r Phase ring R Phase ring W

lm 9.77 0.85 6100 1200
Pixels 7.52 0.65 4692 923
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imperfection of microsphere manufacturing.) The dashed and
dash-dotted green curves in Fig. 11b represent the mean and range
of our OPL measurements on the beads. The two largely overlap-
ping bands defined by the ground truth and our measurements
prove that the OPL measurements from our imaging-model-based
restoration is very close to the ground truth, thus validating our
imaging model for the restoration procedure.

Our imaging model for restoration depends on the hardware
specifications of the phase contrast microscope such as the phase
ring’s outer radius (R) and ring width (W). For the phase contrast
microscope that we used in this validation, R � 6.1 mm � 4700 pix-
els and W � 1.2 mm � 900 pixels. Fig. 12 shows the mean absolute
error between the computed measurements and ground truth OPL
corresponding to the correct and wrong estimations of phase ring
parameters. It turns out that wrong phase ring parameters do not
generate satisfactory restoration results and the difference between
the measured OPL and ground truth OPL is large. Understandably,
the restoration achieves the least error when using the correct
phase ring parameters (R � 4700 and W � 900 in this section) and
it is stable around the correct parameters. There are strip patterns

from northwest to southeast in the error matrix of Fig. 12, the cause

of which can be explained using Eq. (48) where the airy kernel (air-

y(r) = fR(r) � fR�W(r)) has two terms: fRðrÞ ¼ R J1ð2pRrÞ
r and

Fig. 10. Optical Path Length (OPL) of a bead. (a) Ground truth OPL of the bead (the top and bottom illustrations show the surf view and 2D view of OPL, respectively); (b) real
measurement on beads’ OPL from the restored phase contrast image.

Fig. 11. Comparing our measurement with the ground truth. (a) The absolute error between the real measurement and ground truth OPL; (b) the OPL along the bead’s middle
horizontal profile.

Fig. 12. The mean absolute error between real measurements and ground truth OPL
regarding to different parameters on the phase ring (R and W).
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fR�WðrÞ ¼ ðR�WÞ J1ð2pðR�WÞrÞ
r . When we change the parameters R and

W with the same amount �, the first term of the airy kernel is chan-
ged but the second term is not since fR+��(W+�)(r) = fR�W(r). Thus, the
airy kernels are similar if we change a little on the R and use the
same amount of change for W. Due to the similar airy kernels, the
mean absolute error corresponding to different Rs and Ws within
a local neighborhood is close. Consequently, the restoration is sta-
ble when there are small deviations on the phase ring parameters.

5.2. Restoration for segmentation

Fig. 13 shows several restoration samples on real phase contrast
images. It appears that the restored artifact-free images are easier
to be segmented because the cells are represented by bright (posi-

tive-value) pixels set on a uniformly black (zero-value) background.
To see if this is the case, we have done quantitative evaluation of
segmentation by using restored images in this section.

5.2.1. Data
Two phase contrast microscopy image sequences were captured

at the resolution of 1040 � 1392 pixels per image. Seq1: C2C12
muscle stem cells proliferated from 30+ to 600+ cells (imaged by
ZEISS Axiovert 135TV phase contrast microscope at 5� magnifica-
tion over 80 h at 5 min intervals, 1000 images in total, Fig. 14a
and c). Seq2: hundreds of bovine vascular cells migrated to the cen-
tral image region (imaged by Leica DMI 6000B phase contrast
microscope at 10X magnification over 16 h at 5 min intervals, 200
images in total, Fig. 14f and h).

Fig. 13. Restored artifact-free phase contrast images. Top row: phase contrast microscopy images with increasing cell densities in the view field; Bottom row: the
restorations corresponding to the top row.

Fig. 14. Quantitative evaluation. (a–b, c–d, f–g, h–i): the pair of observed and restored images; (e) 10 ROC curves corresponding to ten annotated images in sequence 1; (f)
four ROC curves corresponding to four annotated images in sequence 2.
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5.2.2. Metrics
We denote cell and background pixels as positive (P) and nega-

tive (N), respectively. The true positive rate is defined as TPR = jTPj/
jPj where true positive (TP) stands for those cell pixels correctly la-
beled by both skilled human and our method. The false positive
rate is defined as FPR = j FPj/jNj where false positives (FP) are those
cell pixels labeled by our method mistakenly. The accuracy is de-
fined as ACC = (jTPj + jNj � jFPj)/(jPj + jNj).

5.2.3. Parameters
We normalized the restored images onto value range [0,1].

Based on a training pair of restored image and its ground truth mask
(Seq1 uses the 500th image and Seq2 uses the 100th image), we
applied a series of values between zero and one to threshold the re-
stored image and compared them with the ground truth to compute

TPR and FPR scores, which provided a ROC curve. Different param-
eter sets in the objective function generate different ROC curves.
We searched the optimal parameter set (xs = 1, xr = .001 and
xt = .1 in the evaluation) with the largest area under the ROC curve
(AUC). For the curve with the largest AUC, we searched the thresh-
old that has the highest ACC to segment the restored image into a
binary map (both Seq1 and Seq2 got the best threshold equal to
0.22). We applied the learned parameters to all other images.

5.2.4. Evaluation
We manually labeled every 100th image in Seq1 (2369 anno-

tated cell bitmasks in 10 images, 8.6 � 105 cell pixels in total) and
every 50th image in Seq2 (2918 annotated cell bitmasks in 4 images,
1.1 � 106 cell pixels in total). It took human experts about 2 h to
label one thousand cell bitmasks in an image. Fig. 14 shows some

Fig. 15. Level set segmentation with three different initializations (Rows (a–c)). Column 1: Initialization (red contours) overlaid on the input image; Column 2: Binary mask
corresponding to the initialization contours; Column 3: Evolved contour after 10,000 iterations; Column 4: Segmentation mask corresponding to the evolved contours. For
comparison, our segmentation is shown in Fig. 19. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Our restoration-based segmentation outperforms the Otsu thresholding and level-set approaches consistently, in terms of the accuracy metric. The top title
summarizes the average accuracy of each method on the two sequences.
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input and restored images with all ROC curves of each individual
image shown in Fig. 14e and j, where ROC curves deviate gradually
from the perfect top-left corner (AUC = 1) as cell density increases in
the microscopy image sequence. The average AUC is 94.2% (Seq1)
and 89.2% (Seq2), and the average segmentation accuracy is 97.1%
(Seq1) and 90.7% ( Seq2). We have achieved high segmentation
accuracy that enabled accurate cell detection and tracking.

5.3. Comparison with other approaches

In this section, we compare our restoration-based segmentation
with two other representative methods: (1) three-class Otsu thres-
holding (Fig. 1c), which classifies pixels into inner dark cell regions,
halo and background classes, and (2) level-set method, which
evolves initial contours towards object boundaries. There are two
common ways to define initial contours for the level-set approach:
a single contour (Fig. 15a) or multiple contours uniformly distrib-
uted over the entire image (Fig. 15b). However, the evolution of
contours from these two initializations stop around the halo re-
gions as shown in the fourth column of Fig. 15a and b, which gen-
erate wrong segmentation. Another observation from Fig. 15a and
b is that the level-set approach is sensitive to the initialization (e.g.,

the segmentation results in the fouth column of Fig. 15 are differ-
ent due to different initializations). For example, an initial contour
inside a nucleus region will expand to the boundary between the
nucleus and the halo. However, an initial contour containing the
cell and halo will contract toward the boundary between the halo
and the background, which does not provide satisfactory segmen-
tation. For phase contrast images with halo artifact, the level-set
approach works only when the initial contours are close to the evo-
lution convergence, thus the third initialization we used is the seg-
mentation of inner dark cell regions generated by the three-class
Otsu thresholding method, as shown in Fig. 15c.

We compare our restoration-based segmentation with the Otsu
thresholding method and level-set approach (initialized by segmen-
tation of inner dark cell regions) on two microscopy image sequences
(sequence 1 with 10 annotated images, sequence 2 with 4 annotated
images). As shown in Fig. 16, our approach outperforms the other
two approaches consistently, based on the accuracy metric.

5.4. The effects of imaging model and regularizations on restoration

Our linear imaging model (Eq. (18)) indicates that the image
formation process of phase contrast microscopy can be approxi-

Fig. 17. The importance of imaging model and regularizations. (a) Input phase contrast image; (b) restored image by our imaging model with smoothness and l1 sparseness
regularizations; (c) blind deconvolution on the input phase contrast image; (d) restored image without sparseness regularization; (e) restored image without smoothness
regularization.

Fig. 18. Comparing four algorithm implementations on restoring every 100th image of a phase contrast microscopy image sequence, in terms of time cost and segmentation
accuracy.
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mated by convolving an artifact-free image with a filtering kernel.
Due to the convolution, a possible solution to restore the artifact-
free image is blind-deconvolution (Levin et al., 2009), which esti-
mates H and f at the same time. However, blind deconvolution

might obtain an unsatisfactory result if the blindly estimated H
does not correspond to the correct optics, as shown in Fig. 17c.

We have developed regularized cost function (Eq. (28)) to
restore phase contrast images. When there is no sparse constraint,

Fig. 19. Segment and detect cells based on the restoration result. (a) Input phase contrast image; (b) Restored artifact-free image; (c) the bitmap by thresholding the restored
image; (d) the blobs classified as cells; (e) the detected cells overlaid on the original image with cell contours (red) and cell IDs (green). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Top row: input phase contrast images; middle row: restored phase contrast images; bottom row: detected cells are labeled by red boundaries and green IDs. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the restored image contains many false alarms from the back-
ground (Fig. 17d). When there is no smoothness constraint, gaps
between object parts, such as cell nuclei and membrane, may ap-
pear (Fig. 17e).

To evaluate the effect of image-adaptive regularization, initiali-
zation from a look-up table, and temporal consistency on the resto-
ration, we compare four different algorithm implementations on
Seq1: (1) original restoration algorithm in Yin et al. (2010b) with
constant sparseness matrix, constant initialization and without
temporal consistency assumption; (2) revised Yin et al. (2010b)
with regularization terms adapted to image properties (described
in Section 4.3); (3) revised Yin et al. (2010b) with adaptable regular-
ization terms and an initialization from a look-up table (described
in Section 4.4); and, (4) revised (Yin et al., 2010b) with all afore-
mentioned techniques (image-adaptive regularization, initializa-
tion from a look-up table, and temporal consistency assumption).

Seq1 includes a growing number of stem cells (Fig. 14a and c).
When the cell number increases, the image has more nonnegative
f values (cell pixels) and this causes more element-wise computa-
tion in Eq. (33), therefore the computational cost increases from
the beginning to the end of this sequence, as shown in Fig. 18a.
From Fig. 18a, we also observe that all the proposed techniques
(image-adaptive regularization, initialization from a look-up table
and temporal consistency assumption) have contributed to de-
crease the computational cost. As the cell number increases in
the sequence, the restoration accuracy decreases a little bit as
shown in Fig. 18b, because a large number of cells cultured in
the dish may occlude each other and blur the halo effect. Further-
more, from Fig. 18b, we observe the four algorithm implementa-
tions have similar accuracies compared to each other. The reason

is because our numerical iterative algorithm to solve the nonnega-
tive quadratic optimization problem in Eq. (30) is guaranteed to
converge to a unique global optimum (Sha et al., 2007), which is
an appealing property.

5.5. Restoration for cell detection and tracking

The restored phase contrast images have attractive properties
such that cell pixels have positive values on a uniformly zero-value
background, which can greatly facilitate the cell detection and
tracking task. Given a phase contrast image (Fig. 19a), we restore
it (Fig. 19b) and threshold the result to get the bitmap, shown in
Fig. 19c. We connect the bright pixel components into blobs (cell
candidates) and classify the blobs into cells or non-cells using a
trained SVM classifier (Cristianini and Shawe-Taylor, 2000). The
blob features we used in the SVM classifier include blob area, shape
and corresponding intensity values in the phase contrast image
and the restored image. Fig. 19d shows the classification result
and Fig. 19e shows the detected cells overlaid on the original im-
age. Compared to the segmentation results using traditional image
processing methods in Fig. 1, our restored artifact-free image is
much easier for segmenting and detecting cells. For qualitative
evaluation, Fig. 20 shows more cell detection results based on re-
stored phase contrast images. The overlapping/occluding cells
can be handled by the algorithm in (Bise et al., 2009) that matches
partial contours of overlapping cells to maintain cell identities.

We quantitatively evaluate the performance of cell detection
using a fully annotated sequence from (Kanade et al., 2011) where
a total of 85,681 cell centroids are annotated in 780 images. Denot-
ing annotated cells as positive (P), the Recall of detection is defined

Fig. 21. Evaluate the performance of cell detection based on restoration. (a and c) Input phase contrast image with the detected cells compared to the ground truth. (b and d)
The restored phase contrast image.
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as Recall = jTPj/jPj, where true positive (TP) stands for those cells
correctly detected by both skilled human and our method, and
the Precision is defined as Precision = j TPj/(jTPj + jFPj), where false
positives (FP) are those cells detected by our method mistakenly.
Over the 85,681 cells in 780 images, we achieve Precision of 91%
and Recall of 90%. The cell detection module based on our restora-
tion method is integrated into a large-scale cell tracking system
that has been applied to several biological applications such as
stem cell production and wound healing assays (Kanade et al.,
2011).

There are a few failure cases in cell detection. As shown in
Fig. 21, the false positives are mainly from dirt in the background
or extended cell structures with positive values in the restored im-
age. We believe a cell classifier using temporal context may over-
come this problem and plan to explore that in the future work.
Most of the missed cell detections come from cell mitosis (cell divi-
sion) regions because these regions do not follow the normal cell
appearance model. The mitotic cells are bright regions instead of
dark cell regions surroundded by bright halos. We use mitosis
event detection methods (e.g., Liu et al., 2010) to detect these mi-
totic cells for cell tracking applications.

6. Conclusion

The halo and shade-off artifacts in phase contrast microscopy
hinder automated microscopy image analysis such as cell segmen-
tation, a critical step in cell tracking systems. We derived a linear
imaging model representing the optical properties of phase con-
trast microscopes. Using this model, we develop an algorithm to
restore artifact-free phase contrast images by solving a regularized
quadratic optimization problem. The regularization terms are
adapted to input image properties and we consider temporal con-
sistency when restoring time-lapse microscopy images. To acceler-
ate the iterative process, we infer an initialization close to the
optimal solution by using a look-up table built from training
images. The restored artifact-free images are amenable to cell seg-
mentation via thresholding. This work suggests that understanding
the optics of microscopes can lead to more proficient microscopy
image analysis and interpretation. In particular, we have demon-
strated that this approach can greatly facilitate cell segmentation,
detection and tracking.
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Appendix A. Derivation on Eq. (15)

The inverse Fourier transform of TD(�) (Eq. (8)) is derived based
on the Hankel transform (the inverse 2D Fourier transform of a cir-
cularly symmetric function is known as the zero-order Hankel
transform (Gaskill, 1978)). The zero-order Hankel transform on a
cylinder function is

H0 : cylðtÞ $ psombðrÞ ð45Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

is the radial distance and somb (�) is the som-
brero function (resembles a Mexican hat)

sombðrÞ ¼ 2J1ð2prÞ
2pr

ð46Þ

and J1(�) is the first order Bessel function of the first kind. Applying
the zero-order Hankel transform (Eq. (45)) onto TD(�), we get

tDðxÞ ¼ dðrÞ þ ðifp � 1ÞairyðrÞ ð47Þ

where airy (r) is an obscured Airy pattern (Born and Wolf, 1980)

airyðrÞ ¼ R
J1ð2pRrÞ

r
� ðR�WÞ J1ð2pðR�WÞrÞ

r
: ð48Þ

Appendix B. Derivation on Eq. (18)

First, we normalize the Airy kernel

airyðrÞ  airyðrÞ
1 � airyðrÞ ð49Þ

such that any constant matrix convolved with the normalized airy
(�) will be the constant matrix itself. Secondly, the Taylor expansion
of e�if(x) is

e�if ðxÞ ¼ 1� if ðxÞ þ ðif ðxÞÞ
2

2!
þ � � � ð50Þ

Since the phase shift caused by the specimen is small, the higher or-
der terms are close to zero, i.e.

ðf ðxÞÞ2 � 0 ð51Þ

Based on Eqs. (49) and (51), we have

ðf ðxÞ � airyðrÞÞ2 � 0 ð52Þ

Based on Eqs. (50) and (51), we have

e�if ðxÞ � 1� if ðxÞ: ð53Þ

Using Eqs. (51)–(53), we compute the intensity of an observed im-
age as

gðxÞ ¼ j~lSðxÞ �~lDðxÞj2 ð54Þ
¼ jifpAeib � fcAeiðb�f ðxÞÞ � ðifp � 1ÞfcAeiðb�f ðxÞÞ � airyðrÞj2 ð55Þ

� 2fcfpð1� fcÞA2 fpð1� fcÞ
2fc

þ f ðxÞ � f ðxÞ � airyðrÞ
� �

ð56Þ

/ C þ f ðxÞ � ðdðrÞ � airyðrÞÞ ð57Þ

where C ¼ fpð1�fcÞ
2fc

is a constant.
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