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Abstract. Image segmentation is essential for many automated mi-
croscopy image analysis systems. Rather than treating microscopy im-
ages as general natural images and rushing into the image processing
warehouse for solutions, we propose to study a microscope’s optical prop-
erties to model its image formation process first using phase contrast
microscopy as an exemplar. It turns out that the phase contrast imag-
ing system can be relatively well explained by a linear imaging model.
Using this model, we formulate a quadratic optimization function with
sparseness and smoothness regularizations to restore the “authentic”
phase contrast image that directly corresponds to specimen’s optical path
length without phase contrast artifacts such as halo and shade-off. With
artifacts removed, high quality segmentation can be achieved by sim-
ply thresholding the restored image. The imaging model and restoration
method are quantitatively evaluated on two sequences with thousands of
cells captured over several days.

1 Introduction

Long-term monitoring of living specimen’s movement and behavior has a wide
range of applications in biological discovery. Since transparent specimens such
as living cells generally lack sufficient contrast to be observed by common light
microscopes, the phase contrast imaging technique was invented to convert the
minute light phase variation caused by specimen into changes in light amplitude
that can be observed by naked eyes or cameras [15]. Due to the optical principle
and some imperfections of the conversion process, phase contrast images contain
artifacts such as the halo surrounding the specimen and shade-off (Fig. 3(b),
the intensity profile of a large specimen gradually increases from the edges to
the center, and even approaches the intensity of the surrounding medium). Over
time, biologists have learned how to overcome or even exploit those artifacts for
interpreting images. When computer-based microscopy image analysis began to
relieve humans from tedious manual labelling [5, 8, 12, 14], it is unsurprising that
those artifacts cause the major difficulty in automated image processing. In par-
ticular, they hinder the process of segmenting images into cells and background,
which is the most critical step in almost all cell analysis and tracking systems.

1.1 Previous work
In microscopy image segmentation, specimen pixels are segmented from back-
ground pixels and then grouped into objects. In the past decades, many image



segmentation methods have been invented. For example, thresholding on local
intensity value and variation has a long history on cell image segmentation ([13]
and references therein). Morphological operations on the gradient or intensity
images are widely applied to segment specimen pixels [5, 8]. Using the artifact
of microscopy images, Laplacian of Gaussian filter is also used to extract ob-
ject blob and contour [12]. After obtaining binary masks indicating whether
each pixel is a specimen or background pixel, connected component labelling or
marker-controlled watershed algorithms are often performed to group specimen
pixels into specimen objects [5, 14].

1.2 Our proposal
The previous image segmentation methods do not consider the microscopy image
formation process and treat them in the same way as general natural images.
However, there are apparent differences between natural images and phase con-
trast microscopy images, such as halo and shade-off. Because of these artifacts,
the observed image intensity does not exactly correspond to specimen’s optical
path length (product of refractive index and thickness). Recently, Li and Kanade
[9] proposed an algebraic framework for preconditioning microscopy images cap-
tured by differential interference contrast (DIC) microscopes. This inspired us to
think about whether understanding the phase contrast optics at an early stage
will help segment phase contrast images. In fact, we found that those artifacts
are not caused by random processes, instead they can be relatively well modeled
by the optical properties of the image formation process in the phase contrast
microscope imaging system. In this paper, we derive a linear imaging model for
phase contrast microscopy and formulate a quadratic optimization function to
restore the “authentic” phase contrast image without halo or shade-off effects.
With artifacts removed, high quality segmentation can be achieved by simply
thresholding the restored image.

2 Imaging Model of Phase Contrast Microscopy

Phase contrast microscope uses a conjugate pair of condenser annulus and phase
plate as shown in Fig. 1(c), where the specialized annulus is placed at the front
focal plane of the condenser while the phase plate is at the rear focal plane of the
objective lens. Wavefronts illuminate the specimen and divide into two compo-
nents: one component passes through and around the specimen without deviation
(commonly referred to as the S wave); the other component is diffracted, atten-
uated and retarded because of specimen (D wave). A typical phase retardation
caused by living cells in tissue culture is a quarter wave length [10]. The two
waves enter the objective lens and combine through interference to produce the
particle wave (P wave).

Observing the specimen in the microscopy image depends on the intensity
difference between specimen and its surrounding background, i.e. the amplitude
difference between particle (P) and surround (S) waves. Without any phase con-
trast technique, the P and S waves have nearly the same wave amplitudes as
shown in Fig. 1(a), thus the specimen remains transparent and appears invisi-
ble. However, in phase contrast microscope (Fig. 1(c)), the phase plate has an



Fig. 1. Wave interaction and phase contrast microscope optics. (a) Without phase
contrast, the amplitude difference between P (dash) and S (solid) waves is small; (b)
With phase contrast technique, the difference is large enough to be observed. (c) The
phase plate separates the surround (solid) and diffracted (dot) lights, speeds up (i.e.
advances the phase by 1/4 wavelength) and attenuates the surround light. A small
portion of diffracted light (dash) leaking into the phase ring causes the halo and shade-
off artifacts.

etched ring with reduced thickness to advance the surround wave by a quarter
wavelength. The phase ring also has a partially absorbing metallic film to at-
tenuate the surround wave such that the final contrast between P and S waves
are easy to be perceived. The diffracted wave spreads over the phase plate. Most
of it passes through the phase plate without changes, and it interferes with the
surround wave to form the particle wave as shown in Fig. 1(b) where the ampli-
tude difference between P and S waves is now observable and the specimen will
appear as dark on a bright background. Unfortunately, some of the diffracted
wave will “leak” into the phase ring, which cause the halo and shade-off artifacts.

After illuminating waves pass through the specimen plate, the unaltered sur-
round wave lS(x) and the diffracted wave lD(x) (attenuated and retarded) are

lS(x) = Aei0 (1)

lD(x) = ζcAe
−if(x) (2)

where i2 = −1, x = {(xrj ,xcj), j = 1, · · · , J} represent 2D locations of J image
pixels, A is the illuminating wave’s amplitude, ζc and f(x) represent the ampli-
tude attenuation and phase shift caused by the specimen. Our goal is to restore
f(x), the “authentic” phase contrast image without artifacts. A thin lens with a
large aperture essentially performs a spatial Fourier transform (F) on the waves
from its front focal plane to its rear focal plane [3], thus the waves in front of
the phase plate are LS(w) = F(lS(x)) and LD(w) = F(lD(x)).

The phase plate functions as a band-pass filter. For the non-diffracted sur-
round wave, the positive phase ring attenuates the wave amplitude and advances
its phase by a quarter wave length (π/2), thus the corresponding transmittance
function is

TS(w) = ζpe
iπ2 = iζp (3)

where ζp represents the amplitude attenuation by a phase ring with outer radius
R and width W (R and W are provided by microscope manufactures). The
diffracted wave spreads over the phase plate with a small portion leaking into
the ring. The corresponding transmittance function is



TD(w) = 1 + (iζp − 1)[cyl(
wr
R

)− cyl(
wr

R−W
)] (4)

where wr =
√
w2
u + w2

v is the radial frequency and cyl(·) is a 2D cylinder (or
circular) function: cyl(t) = 1, if 0 ≤ t ≤ 1; 0, otherwise. After band-pass filtering,
we have the waves immediately after the phase plate as L̃S(w) = LS(w)TS(w)
and L̃D(w) = LD(w)TD(w).

The ocular lens perform another consecutive Fourier transform. Mathemati-
cally, the forward and inverse Fourier transforms are identical except for a minus
sign. Hence, we have the waves after the ocular lens as l̃S(x) = lS(x)∗ tS(x) and
l̃D(x) = lD(x)∗ tD(x), where ∗ denotes the convolution operator. tS(·) and tD(·)
are the inverse Fourier transform of TS(·) and TD(·), respectively

tS(x) = iζpδ(x) (5)

tD(x) = δ(x) + (iζp − 1)airy(r) (6)

where δ() is a Dirac delta function, r =
√
u2 + v2 is the radial distance and

airy(r) is an obscured Airy pattern [1]

airy(r) = R
J1(2πRr)

r
− (R−W )

J1(2π(R−W )r)

r
(7)

and J1(·) is the first order Bessel function of the first kind. Fig. 2 shows a sample
of obscured Airy pattern where a bright region in the center is surrounded by a
series of concentric bright/dark rings.

Fig. 2. An obscured Airy pattern. (a) 3D surface view; (b) 2D view.

Substituting lS , tS , lD, tD into l̃S and l̃D(x), we get

l̃S(x) = iζpA (8)

l̃D(x) = ζcAe
−if(x) + (iζp − 1)ζcAe

−if(x) ∗ airy(r) (9)

The first term in Eq.9 is the primary component of the diffracted wave that
destructively interferes with the non-diffracted surround wave and generates
the contrast for human observation. The second term in Eq.9 comes from the
diffracted wave leaking into the phase ring which causes the halo and shade-off
artifacts. The intensity of the final observed image is computed as

g(x) = |l̃S(x)− l̃D(x)|2 (10)

∝ (δ(r)− airy(r)) ∗ f(x) + C (11)



where C is a constant. The convolution kernel in Eq.11 represents the point
spread function (PSF) of the phase contrast microscope

PSF(u, v) = δ(u, v)− airy(
√
u2 + v2) (12)

which is a linear operator.
Now we can define the linear imaging model between g (observed image) and

f (artifact-free phase contrast image to be restored) as

g ≈ Hf + C (13)

In practice, we discretize the PSF kernel as a (2M+1) × (2M+1) matrix (e.g.
M = 5) and the H matrix is defined by

(Hf)j =

2M+1∑
u=1

2M+1∑
v=1

PSF(u, v)f(xrj + u−M,xcj + v −M) (14)

3 Restoring Artifact-free Phase Contrast Image

Now that the phase-contrast microscopy imaging model is established as in
Eq.13, we develop procedures in this section to restore f from g. The first step is
to remove the background C from g by flat-field correction [10], after which we
re-define g as the corrected image, i.e. g ← g − C. The second and major step
is to solve f from g ≈ Hf . An attempt to solve this by simply inversing H is
known to be highly noise-prone. Instead, we formulate the following constrained
quadratic function to restore f

O(f) = ‖Hf − g‖22 + ωsf
TLf + ωr‖Λf‖pp (15)

where L and Λ are Laplacian matrix and diagonal matrix defining the local
smoothness and sparseness with corresponding weights ωs and ωr, and ‖ · ‖p
denotes the lp-norm. A similarity-based Laplacian matrix is defined as L =
D−W where W is a symmetric matrix whose off-diagonal elements are defined
as W(i, j) = e−(gi−gj)

2/σ2

. Typically, σ2 is chosen by hand [4] or computed
as the mean of all (gi − gj)

2’s. D is a diagonal degree matrix where D(i, i) =∑
j W(i, j). The image matting Laplacian matrix proposed by Levin et al. [7]

can also be applied here.
When using l2 sparseness regularization, O(f) can be expressed as

O(f) = fTQf − 2bT f + gTg (16)

where

Q = HTH + ωsL + ωrΛ
TΛ (17)

b = HTg (18)

A closed-form solution of f can be achieved by solving a sparse linear system
of equations Qf = b. Available solvers include conjugate gradient method or
Matlab backslash operator (used in [4, 7]). When using l1 regularization, there
is no closed-form solution and only numerical approximation is available. We
combine non-negative multiplicative update [11] and re-weighting techniques [2]
to solve the l1 regularized objective function [9].



4 Experiments

Fig. 3 shows several restored samples by solving the l1-regularized quadratic
problem based on the derived imaging model. We will discuss the effects of dif-
ferent regularization terms and corresponding solvers in Section 4.1. In Fig. 3,
it appears that the restored artifact-free images are easier to be segmented be-
cause the cells are represented by bright (positive-valued) pixels set on a uni-
formly black (zero-valued) background. To see if this is the case, we have done
quantitative evaluation of segmentation by using restored images in Section 4.2.

Fig. 3. Restore artifact-free phase contrast images. (a) synthesized phase contrast im-
age; (b) intensity profile of the central row of (a) (or one may think of it as a 1D
phase contrast image); (c)-(e) real phase contrast microscopy images with increasing
cell densities; (f)-(j) restored artifact-free images corresponding to (a)-(e).

4.1 Smoothness and lp sparseness regularizations

When using l2 sparseness regularization in Eq.15, we can restore a closed-form
solution f (Fig. 4(a)) from g (Fig.3(d)). This closed-form solution has both posi-
tive and negative values corresponding to cell pixels (Fig. 4(b)) and halo/mitotic
cell pixels (Fig. 4(c)) respectively. Comparing Fig. 3(i) with Fig. 4(b), we find
that l2 regularization does not enhance sparseness as well as l1 regularization
does. This phenomenon is also discussed in [6]. When there is no sparse con-
straint, the restored image includes many background pixels (Fig. 4(d)). When
there is no smoothness constraint, gaps between object parts such as cell nuclei
and membrane may appear (Fig. 4(e)). Without smooth or sparse constraints,
the directly solved f by inversing H is quite noisy (Fig. 4(f)).

In terms of computational cost (Fig. 4(g)), the nonnegative quadratic pro-
gramming solver (NQP) for l1-regularized O(f) is slower than conjugate gradient
method (CG) for l2-regularized O(f). On a workstation with Intel Xeon X5550
CPU and 24G memory, it costs 23 seconds for NQP solver to restore an image
with 1000 × 1000 pixels using Matlab while CG costs 1.9 seconds. The Matlab
backslash operator costs much more time and memory. In the following evalua-
tion, we use NQP solver for l1-regularized O(f).

4.2 Effects of restoration on segmentation

Data. Two sequences were captured at the resolution of 1040 ∗ 1392 pixels per
image. Seq1: C2C12 muscle stem cells proliferated from 30+ to 600+ cells (im-



Fig. 4. Sparseness and smoothness. (a) restored image by applying conjugate gradient
method (CG) to solve O(f) with l2 sparseness regularization; (b) and(c) the positive and
negative part of (a); (d) restored image without sparseness; (e) restored image without
smoothness; (f) restored image without sparseness or smoothness; (g) computational
cost comparison.

aged by ZEISS Axiovert 135TV phase contrast microscope at 5X magnification
over 80 hours, 1000 images, Fig. 5(a,c)). Seq2: hundreds of bovine vascular cells
migrated to the central image region (imaged by Leica DMI 6000B phase con-
trast microscope at 10X magnification over 16 hours, 200 images, Fig. 5(f,h)).

Metrics. We denote cell and background pixels as positive (P) and negative
(N) respectively. The true positive rate is defined as TPR = |TP|/|P | where
true positive (TP) stands for those cell pixels correctly labelled by both skilled
human and our method. The false positive rate is defined as FPR = |FP|/|N |
where false positive (FP) are those cell pixels labelled by our method mistakenly.
The accuracy is defined as ACC = (|TP|+ |N | − |FP|)/(|P |+ |N |).

Parameters. We normalized the restored images onto value range [0, 1]. Based
on a training pair of restored image and its ground truth mask (Seq1 uses the
500th image and Seq2 uses the 100th image), we applied a series of values be-
tween zero and one to threshold the restored image and compared with the
ground truth to compute TPR and FPR scores, which provided a ROC curve.
Different parameter sets in the objective function generate different ROC curves.
We searched the optimal parameter set (ωs = 1 and ωr = .001 in the evaluation)
that has the largest area under the ROC curve (AUC). For the curve with the
largest AUC, we searched the threshold that has the highest ACC to segment the
restored image into a binary mask (both Seq1 and Seq2 got the best threshold
equal to 0.22). We applied the learned parameters to all other images.

Evaluation. We manually labelled every 100th image in Seq1 (2369 annotated
cells, 8.6 × 105 cell pixels) and every 50th image in Seq2 (2918 annotated cells,
1.1×106 cell pixels). It took human experts about 2 hours to label one thousand
cell boundaries in an image. Fig. 5 shows some input and restored images with
all ROC curves shown in Fig. 5(e) and (j), where ROC curves deviate gradually
from the perfect top-left corner (AUC=1) as cell density increases. The average
AUC is 94.2% (Seq1) and 89.2% (Seq2), and the average segmentation accuracy
is 97.1% (Seq1) and 90.7% (Seq2).



Fig. 5. Quantitative evaluation. (a-b, c-d, f-g, h-i): the pair of observed and restored
images; (e) and (j): ROC curves for sequence 1 and 2 respectively.

5 Conclusion

We derived a linear imaging model representing the optical properties of phase
contrast microscopes. Using our model, authentic artifact-free phase contrast
images are restored by solving a constrained quadratic optimization problem.
This work suggests that a better understanding of the optics of microscopes leads
to better microscopy image analysis and interpretation. In particular, we have
demonstrated that this approach can greatly faciliate the effort on microscopy
image segmentation.
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