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Abstract. The restoration of microscopy images makes the segmenta-
tion and detection of cells easier and more reliable, which facilitates auto-
mated cell tracking and cell behavior analysis. In this paper, the authors
analyze the image formation process of phase contrast images and pro-
pose an image restoration method based on the dictionary representation
of diffraction patterns. By formulating and solving a min-ℓ1 optimiza-
tion problem, each pixel is restored into a feature vector corresponding
to the dictionary representation. Cells in the images are then segmented
by the feature vector clustering. In addition to segmentation, since the
feature vectors capture the information on the phase retardation caused
by cells, they can be used for cell stage classification between intermitot-
ic and mitotic/apoptotic stages. Experiments on three image sequences
demonstrate that the dictionary-based restoration method can restore
phase contrast images containing cells with different optical natures and
provide promising results on cell stage classification.

1 Introduction

Computer-aided image analysis of phase contrast microscopy [1] has attracted
increasing attention since it enables long-term monitoring of the proliferation
and migration processes of live cells. Among the tasks of microscopy cell image
analysis, cell detection and segmentation is one of the most fundamental com-
ponents in that various analyses can be performed based on it. Cell detection
and segmentation in phase contrast microscopy is challenged by clustered cells,
cell shape deformation, and image artifacts such as bright halos and shade-off.

The common techniques employed for cell segmentation include threshold-
ing [2], edge detection, and morphological operations [3]. These methods often
fail when the contrast between cells and background is low. Another group of
segmentation algorithms that are based on intensity gradient of images, namely,
watershed [4], active contours [5], and level set [6], are sensitive to the initializa-
tions and local noisy gradients. To address these drawbacks, a restoration-based
segmentation was recently proposed [7]. The method models the image forma-
tion process of phase contrast microscope to restore phase retardation caused by
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cells, based on which cells are detected. However, this method fails to segment
cells when they are bright in phase contrast microscopy images, e.g., mitotic or
apoptotic cells, because the model assumes that the phase retardation caused by
cells is small, which is not valid when cells become thick and thus appear bright
in phase contrast microscopy.

In this paper, we revisit the phase contrast imaging model in [7], and propose
a novel restoration algorithm based on dictionary representation of diffraction
patterns, which can restore phase contrast images with various phase retarda-
tions. The proposed dictionary-based method restores a feature vector corre-
sponding to diffraction patterns for each pixel. After the image restoration, high
quality segmentation is achieved by clustering the feature vectors. Furthermore,
since the restored feature vectors embed phase retardation information, cells
can be classified between different stages, particularly between intermitosis and
mitosis/apoptosis(dead).

2 Methodology

2.1 The Image Formation of Phase Contrast Microscope

The phase contrast microscope converts the phase difference in light passing
through the transparent specimen to brightness changes in the image [1]. The
wavefront of the illuminating beam is divided into two components after passing
through the specimen. The primary component is the surround wave (S wave)
that passes through or around the specimen without interacting with it. The
other component is the diffracted wave (D wave) that is scattered by the spec-
imen. These two waves undergo interference and produce a resultant particle
wave (P wave). The cells can be observed only when the amplitudes of P wave
and S wave are significantly different.

In [7], the surround wave lS and the diffracted wave lD are derived as:

lS = iζpAe
iβ , and lD = ζcAe

i(β+θ(x)) + (iζp − 1)ζcAe
i(β+θ(x)) · airy(r), (1)

where A and β are the amplitude and phase of the incident light, respectively;
ζc and ζp are the amplitude attenuation factors caused by cells and phase ring,
respectively; θ(x) is the phase retardation caused by the specimen at location x;
and airy(r) is an obscured Airy pattern (diffraction pattern with a bright region
in the center surrounded by a series of concentric dark and bright rings [7], as is
shown in Fig.1(a)). The particle wave lP is calculated as lP = lS + lD.

During the imaging model derivation in [7], the exponential terms in equa-
tion (1) are approximated using eiθ(x) ≈ 1+ iθ(x). Note that this approximation
is valid only when the phase retardation θ(x) is close to zero. The assumption is
apparently not applicable to general cases since θ(x), which is a function of the
refractive indices and the thickness of cells, often vary along with different cell
types and stages; more formally, the phase retardation θ can be calculated as:

θ =
2π

λ
(n1 − n2)t, (2)



where λ denotes the wavelength of the incident light; t is the thickness of the cell;
and n1 and n2 denote the refractive indices of the cell and medium, respectively.

2.2 Dictionary Representation of Diffraction Patterns

In this paper, we propose a generalized imaging model by approximating the
term eiθ(x) in Eq. (1) using a linear combination of {eiθm}:

eiθ(x) ≈
M−1∑
m=0

ψm(x)eiθm , s.t. ψm(x) > 0. (3)

where {θm} = {0, 2πM , · · · , 2mπ
M , · · · , 2(M−1)π

M }. We impose the nonnegative con-
straint because the solution would not be unique without it as ψm(x)eiθm =
−ψm(x)ei(θm+π). Moreover, the nonnegative constraint removes the absolute op-
erator of ℓ1 norm, allowing the problem to be solved in a standard manner.

The intensity of the observed image g is calculated as:

g = ∥lp∥2 = (lS + lD) · (lS + lD)∗ (4)

= A2

{
ζp

2 + ζc
2 − 2ζ2c · airy(r) + (ζ2p + 1)ζ2c · (airy(r))2+

ζpζc
(
(ζp − i)e−iθ(x) + (ζp + i)eiθ(x)

)
· airy(r) + iζpζc(e

−iθ(x) − eiθ(x))

}
.

Substituting the exponential terms in Eq. (4) with Eq. (3) yields a linear
representation of the observed image:

g = A2


ζp

2 + ζc
2 − 2ζ2c · airy(r) + (ζ2p + 1)ζ2c · (airy(r))2+

M−1∑
m=0

ψm(x)
(
2ζpζc sin θm · δ(r) + 2ζpζc(ζp cos θm − sinθm) · airy(r)

) .

= C +D
M−1∑
m=0

ψm(x)
(
sin θm · δ(r) + (ζp cos θm − sinθm) · airy(r)

)
(5)

where δ(·) is a Dirac delta function, C is a constant that indicates the items
unrelated to the feature vector ψm(x), and D is also a constant. C can be
eliminated by flat-field correction [1, 7] and thus we ignore it for simplicity. Hence,

g ∝
M−1∑
m=0

ψm(x)
(
sin θm · δ(r) + (ζp cos θm − sinθm) · airy(r)

)
,

M−1∑
m=0

ψm(x)PSF (θm), (6)

where PSF denotes the point spread function; i.e., PSF (θm) represents the
diffraction pattern with phase retardation θm. In our experiments, ζp was set
between 0.4 and 0.5 based on the information of microscope we used. Fig. 1
shows a sample of the obscured Airy pattern, and diffraction patterns of different



(a) (b)

0 4 2 3 4 

5 4 3 2 7 4  

Fig. 1: Diffraction patterns: (a) obscured Airy pattern with 3D surface view and 2D
top-view; (b) diffraction patterns with different phase retardations.

phase retardations, for which the color shifts from blue to red along with value
increasing .

We discretize PSF (θm) into a (2T +1) × (2T +1) kernel, (u, v) element of
which is denoted by P̂SF (θm, u, v). Then, from Eq. (6), the imaging model of
(i, j) pixel of g is also discretized as:

g(i, j) =

M−1∑
m=0

2T+1∑
u=1

2T+1∑
v=1

ψm(i+u−T−1, j+v−T−1)P̂SF (θm, u, v). (7)

We define Ψm as the vectorized representation of the matrix {ψm(i, j)} and
hm(i, j) as the vector obtained by vectorizing the sparse matrix whose (i−T :

i+T, j−T :j+T ) submatrix is {P̂SF (θm, u, v)} and the other elements are zero.
Then, Eq. (7) is simplified into:

g(i, j) =

M−1∑
m=0

hm(i, j)TΨm, (8)

and thus the vectorized form of the phase contrast microscopy image {g(i, j)}
can be modeled as:

g =

M−1∑
m=0

HmΨm, s.t. Ψm > 0 (9)

where Hm is the matrix obtained by stacking up row vectors {hm(i, j)T } in
order. Note that when g consists of P pixels in total, Hm is a P × P matrix,
each row of which contains only (2T+1)×(2T+1) non-zero elements.



2.3 The Restoration of the Phase Contrast Images

Based on the theory of sparse representation [8], we formulate the following
optimization problem to restore the feature vector from Eq. (9):

min
N−1∑
k=0

{∥Ψmk
∥1 + wsΨ

T
mk

LΨmk
} s.t.

∥g −
N−1∑
k=0

Hmk
Ψmk

∥2 < ε

Ψmk
> 0

(10)

where L is a Laplacian matrix defining the similarity between spatial pixel neigh-
bors [7]; ws is the weight determining the spatial smoothness, which was set
between 0.2 to 0.4 in our experiments; and, N is the number of representative
retardations, the optimal value of which can vary with the cell type and property.

We propose an iterative optimization algorithm to solve this min-ℓ1 opti-
mization problem since it is known that there is no closed-form solution for such
a problem. We first search the best-matching N bases in the dictionary {Hm}
with the matching pursuit algorithm [8], and then utilize a non-negative multi-
plicative updating method [9] to obtain the nonnegative feature vectors {Ψmk

}.
The procedure is described in Algorithm 1.

Algorithm 1 Optimization Algorithm for the Image Restoration
Input g: vectorized image, {Hm} dictionary matrices,

N : number of representative retardations, th: threshold for residual evaluation.
Output {Ψmk}: feature representation vectors.
Initialization R0

g ← g; P ← size of g; R0
g ← initial residual error.

for k = 0→ N − 1 do
//Search for the best matching basis Hmk in dictionary {Hm}
for m = 0→M − 1 do

Compute inner product: ρm(i) =
⟨
Hm(:, i), Rk

g

⟩
, ∀i ∈ {0,· · ·, P−1}

if m is equal to zero then ρk ← ρm, Hmk ← Hm.
else if ∥ρm∥0 > ∥ρk∥0 then

ρk ← ρm, Hmk ← Hm.
end if

end for
//Calculate the feature vector Ψmk

g′(i) = 0, ∀i ∈ {0,· · ·, P−1} s.t. ρk(i) ≤ th.
g′(i)← Rk

g(i), ∀i ∈ {0,· · ·, P−1} s.t. ρk(i) > th. //Assign the relevant elements
Formulate a subproblem from Eq. (10):

min∥Ψmk∥1 + wsΨmk
TLΨmk s.t. ∥g′ −HmkΨmk∥2 < ε and Ψmk > 0.

Obtain the feature vector Ψmk by solving this problem with the method [9]
Rk+1

g ← Rk
g −HmkΨmk //Update the residual error

end for

Solving Eq. (10) yields the best set of {Ψm1 , · · · , Ψmk
}, which means that

each pixel is restored as a feature vector. We apply K-means clustering on the
feature vectors to segment cells in images.



3 Experiments and Discussions

Data. The proposed approach was tested on three different sets of phase contrast
images of 1040× 1392 pixels. The specifications of the datasets are summarized
in Table 1.

Table 1: Specifications of the Datasets

Frame
number Cell type Cell number

per image Cell stages

Seq1 500 bovine aortic endothelial cell 500 to 800+ intermitosis/mitosis
Seq2 600 muscle stem of a progeroid 50 to 300+ intermitosis/mitosis
Seq3 500 C2C12 myoblastic stem cell 300+ intermitosis/apoptosis(dead)

Parameters. Our algorithms involve three parameters: the dictionary size M ,
the number of representative phase retardations N , and number of classes for
clustering K. We determined these parameters by investigating 10 frames for
each sequence, which were uniformly sampled. For setting M , we plotted M
versus the average residual error in Eq. (3) and set M to be 15 where the
residual error levels off as shown in Fig. 2(a). We set N to be 3 for dark cells,
bright cells, and background. In addition to these three categories, we took into
account two more categories, the boundary between either dark cells or bright
cells and background, setting k to be 5, as shown in Figs. 2(b) and (c).

(a) (b)

intermitosis mitosis

background

intermitosis 

boundary

mitosis 

boundary

intermitosis apoptosis

background

intermitosis 

boundary
apoptosis 

boundary

(c)

Fig. 2: (a) The average residual error decreases as M increases and it levels off
when M is around 15. (b,c) Three representative retardations for intermitosis, mi-
tosis/apoptosis(dead), and background; and five clustering classes for inner intermito-
sis, intermitosis boundary, inner mitosis/apoptosis, mitosis/apoptosis boundary, and
background.

Segmentation: Our dictionary-based approach achieved high quality segmen-
tations as can be seen in Fig. 3. The method well detected bright cells, which
undergo mitosis or apoptosis. On the other hand, the previous method [7] failed
to segment mitotic cells in Seq1 and Seq2 as well as apoptotic cells in Seq3, as



shown in column (d) of Fig. 3. This result clearly demonstrates that the assump-
tion of the previous method on the phase retardation being close to zero is not
valid for bright cells.
Classification: The proposed method is able to not only segment cells, but
also classify them among different stages. Fig. 3.1-3.(c) show zoom-in details on
the classification between intermitotic cells (green) and mitotic/apoptotic(dead)
cells (red). In Fig 3.3.(c), as cell death proceeds, more cells appear red on the
results.

3.2(a) 3.2(d)3.2(b) 3.2(c)

3.3(a) 3.3(d)3.3(c)

3.1(a) 3.1(d)3.1(b) 3.1(c)

3.3(b)

Fig. 3: The sample results of cell segmentation. Top, middle, and bottom rows show
the results on Seq1, Seq2, and Seq3, respectively. (a) Original phase-contrast images,
(b-c) segmentation results of the proposed method, (d) segmentation results of the
previous method [7]. The intermitotic cells are marked with green color and the mitot-
ic/apoptotic(dead) cells with red color. Yellow ellipses in Fig. 3.1(d) indicate missed
mitotic cells. Figs. 3.2(d) and 3.3(d) also demonstrate that the previous method fails
to detect most of mitotic/apoptotic(dead) cells.

Evaluation: In order to evaluate our method quantitatively, we manually la-
beled every 50th image in Seq1 (4125 annotated cells, 9.1 × 105 cell pixels),
every 75th image in Seq2 (1459 annotated cells, 5.1 × 105 cells pixels), and ev-
ery 100th image in Seq3 (3915 annotated cells, 1.32 × 106 cell pixels). During
the test, we skipped the frames used for training. We measured performance in
terms of precision, recall, and F score. Table 2 demonstrates our method signifi-
cantly outperforms the previous method [7]. The performance gap is more clear
when data contains more mitotic or apoptotic(dead) cells. Our method adopts
a combination of different phase retardations to detect various stages of cells.



Table 2: Quantitative Results on Cell Segmentation

Seq.1 Seq.2 Seq.3
Proposed Previous Proposed Previous Proposed Previous

Average Precision 94.3% 87.8% 96.7% 34.8% 96.3% 31.4%
Average Recall 92.1% 85.8% 94.2% 15.7% 93.2% 34.7%
Average Fscore 0.9319 0.8676 0.9543 0.1749 0.9472 0.3212

Table 3 summarizes the performance of our algorithm on cell stage classifica-
tion per frame. For this evaluation, we manually annotated 193 mitotic cells in
Seq1, 396 mitotic cells in Seq2, and 596 apoptotic(or dead) cells in Seq3. The pre-
cision is not as high as recall since bright halos are often detected as bright cells.
Mitosis and apoptosis are temporal events that occur over several frames; thus,
the method that does not utilize temporal information and performs classifica-
tion purely on per-frame features, like ours, obviously has limitation. However,
the high recall indicates that our results can be used to provide a way to extract
candidates for mitotic or apoptotic cells, for other methods that detect cellular
events in a sequence (not per frame) by exploiting temporal contexts, e.g., [10].

Table 3: Quantitative Results on Cell Stage Classification

Seq.1 Seq.2 Seq.3
Precision Recall Precision Recall Precision Recall

71.3% 98.6% 78.3% 97.9% 67.8% 98.3%

4 Conclusion

In this paper, we propose a phase contrast image restoration method based on
the dictionary representation of diffraction patterns. The dictionary corresponds
to different phase retardations caused by specimens at different cell stages. We
formulate a min-ℓ1 optimization problem to restore the images and propose an
iterative algorithm to solve it. Experiments validate that our proposed method
outperforms the previous method [7], particularly when cells undergo various
stages. High quality restoration can benefit automated cell tracking and cell
stage classification.
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