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Abstract. The detection of apoptosis, or programmed cell death, is im-
portant to understand the underlying mechanism of cell development. At
present, apoptosis detection resorts to fluorescence or colorimetric assays,
which may affect cell behavior and thus not allow long-term monitoring
of intact cells. In this work, we present an image analysis method to
detect apoptosis in time-lapse phase-contrast microscopy, which is non-
destructive imaging. The method first detects candidates for apoptotic
cells based on the optical principle of phase-contrast microscopy in con-
nection with the properties of apoptotic cells. The temporal behavior of
each candidate is then examined in its neighboring frames in order to
determine if the candidate is indeed an apoptotic cell. When applied to
three C2C12 myoblastic stem cell populations, which contain more than
1000 apoptosis, the method achieved around 90% accuracy in terms of
average precision and recall.

Keywords: Apoptosis detection, Time-lapse phase-contrast microscopy,
Microscopy image restoration, Event detection in videos

1 Introduction

The detection of apoptosis, or programmed cell death, is critical for further-
ing our understanding in biology as apoptosis plays a significant role in both
normal tissue development and disease progression, e.g., proper organ develop-
ment, stress-induced neurodegeneration, and cancer cell development. In addi-
tion, apoptosis detection is often used for toxicity screening of compounds, such
as pharmacological reagents and biomaterials, as well as drug discovery and
subsequent dosage optimization of chemotherapeutic agents.

Apoptosis occurs in an orderly, step-wise manner starting with a series of
biochemical events that lead to characteristic changes in the cell prior to its
death. The process of apoptosis includes cell shrinking, membrane blebbing,
DNA degradation, and the formation of apoptotic bodies that serve to minimize
spillage of the internal contents of a dying cell to its surroundings [1].

Presently, apoptosis is detected using a variety of assays, which include ab-
sorbance measurements and fluorescence or colorimetric stains, to measure the
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levels and activity of apoptotic molecules. These procedures often require a sam-
ple to be harvested for each time-point measurement; thus, long-term cell moni-
toring is not feasible and multiple samples may be required. On the other hand,
image analysis of cells using non-destructive imaging such as phase-contrast mi-
croscopy offers a way to monitor and detect apoptosis in a population of cells over
time without adversely affecting cell behavior or requiring additional samples.

In this work, we present a method to detect apoptosis in time-lapse phase-
contrast microscopy, particularly for adherent cells, which involves changes in
cell morphology and image intensity during apoptosis. The method first detects
the cells that shrink and become bright as candidates for apoptotic cells in order
to reduce the search space. For this candidate detection, we propose a compu-
tational model of phase-contrast microscopy that can be used to detect both
bright and dark cells. Each candidate is examined to determine if apoptosis in-
deed occurs based on changes in image intensity and texture over the neighboring
frames. The proposed method was tested on three time-lapse microscopy image
sequences of C2C12 myoblastic stem cells.

1.1 Related Work

There have been little-to-no reports of apoptosis detection in phase-contrast
microscopy. To the best of our knowledge, cell death event detection has only
been implicitly performed as a byproduct of cell tracking; i.e., if the trajectory of
a cell terminates during cell tracking, the cell is considered dead. However, this
simple heuristic often yields poor results because many cell trajectories terminate
due to failures in cell tracking as opposed to actual cell death.

One may think that apoptosis detection can be performed by the methods
for mitosis (cell division) detection, such as the method in [2]. However, such
methods are not effective because mitosis detection depends on a unique visual
presentation lasting only a short time, namely a figure eight shape, while apopto-
sis does not involve such a distinctive visual hallmark. In addition, after cells die
through apoptosis, the dead cells often form a cluster with other living or dead
cells, which makes apoptosis detection more difficult than mitosis detection.

2 Method

To narrow down the locations where apoptosis begins, we first locate bright
cells whose formation is followed by size shrinkage and brightness increase. Each
candidate is then validated based on temporal changes in brightness and texture.

2.1 Cell Region Detection

To detect apoptosis candidates, we detect both bright and dark cell areas using
a computational model for the optical principle of phase-contrast microscopy.

According to [3], phase-contrast imaging can be modeled by two waves: the
unaltered surround wave l̃S(x) and the diffracted wave l̃D(x), computed as
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l̃S(x) = iζpAe
iβ (1)

l̃D(x) = ζcAe
i(β+f(x)) + (iζp − 1)ζcAe

i(β+f(x)) ∗ airy(r) (2)

where i2 = −1; A and β are the illuminating wave’s amplitude and phase before
hitting the specimen plate, respectively; ζp and ζc are the amplitude attenuation
factors by the phase ring and the specimen, respectively; f(x) is the phase shift
caused by the specimen at location x; and, airy(r) is an obscured Airy pattern.

The intensity of the final observed image g(x) is then computed as

g(x) = |l̃S(x) + l̃D(x)|2 (3)

= |iζpAeiβ + ζcAe
i(β+f(x)) + (iζp − 1)ζcAe

i(β+f(x)) ∗ airy(r)|2 (4)

≈ 2ζcζp(1 + ζc)A
2
(ζp(1 + ζc)

2ζc
+ f(x)− f(x) ∗ airy(r)

)
(5)

∝ f(x) ∗ (δ(r)− airy(r)) + C (6)

where C =
ζp(1+ζc)

2ζc
is a constant. Based on this approximate linear relation

between f(x) and g(x) in Eq. (6), f(x) can be reconstructed from g(x). Since
f(x) is the phase shift caused by the specimen, thresholding f(x) results in the
detection of cell areas [3].

Note that in order to obtain Eq. (5) from Eq. (4), it is assumed that f(x) is
close to zero, based on which following three approximations are applied:

eif(x) ≈ 1 + if(x), f(x)2 ≈ 0, (f(x) ∗ airy(r))2 ≈ 0. (7)

However, these approximations are not valid particularly for bright cells,
which cause greater phase retardations than dark cells1. As a result, the method
has difficulty in detecting mitotic or apoptotic cells, which appear bright due to
their increased thickness.

To detect bright cells (and also dark cells more properly), we generalize the
model by assuming that f(x) is close to a certain phase θ, which is not necessarily
zero. More formally, f(x) is replaced with θ + f̃(x), where θ is a constant and
f̃(x) is close to zero. Based on this relaxed assumption, g(x) is computed as

g(x) = |iζpAeiβ + ζcAe
i(β+θ+f̃(x)) + (iζp − 1)ζcAe

i(β+θ+f̃(x)) ∗ airy(r)|2 (8)

to which we apply the following approximations

eif̃(x) ≈ 1 + if̃(x), f̃(x)2 ≈ 0, (f̃(x) ∗ airy(r))2 ≈ 0, (9)

resulting in

1 Even for the detection of dark cells, the assumption f(x) ≈ 0 is not quite valid
because the diffracted wave is retarded in phase by approximately 90 degrees through
interaction with the specimen [4].
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Fig. 1. A sample image and bright cell areas on it detected by the proposed model.

Fig. 2. Apoptosis processes in consecutive frames. An apoptotic cell shrinks and its
brightness increases (a) abruptly for a short time period (less than five minutes) or (b)
gradually for a long time period (tens of minutes or a few hours).

g(x) ≈ 2ζcζp(cos θ + ζc)A
2

×
(ζp(1 + ζ2c + 2ζc cos θ)

2ζc(cos θ + ζc)
+ f̃(x)− cos θ + ζc + ζp sin θ

cos θ + ζc
f̃(x) ∗ airy(r)

)
(10)

∝ f̃(x) ∗ (δ(r)−B · airy(r)) + C ′ (11)

where B =
cos θ+ζc+ζp sin θ

cos θ+ζc
and C ′ =

ζp(1+ζ
2
c+2ζc cos θ)

2ζc(cos θ+ζc)
. Note that, if θ = 0, then

f̃(x) = f(x), B = 1, and C ′ = C; thus, Eq (11) reduces to Eq (6). Since this
is also a linear relation between f̃(x) and g(x), f̃(x) can be reconstructed from
g(x) and cell areas can be detected by thresholding f̃(x).

Using this model, we detect bright and dark cell areas, separately with two
different parameters: θb and θd. For the parameter setting, we tested several val-
ues (0, π/6, · · · , 11π/6) and selected the best ones based on apoptosis detection
accuracy on the training set. (This can also be conducted by visual examination
on a first few images.) The proposed model can detect bright cells as well as
dark cells, unlike the previous model. Fig. 1 shows bright cell areas detected by
our model, where bright halos are undetected or weakly detected.

2.2 Apoptosis Candidate Detection

To detect the cells that undergo the beginning of an apoptotic process, we exam-
ine each bright cell area to determine if its formation is followed by the decrease
of dark area and/or the increase of bright area, which represent cell shrinkage
and brightness increase, respectively. If the change is not trivial, the bright cell
area is considered a candidate for an apoptotic cell; otherwise, it is regarded an
already dead cell or a bright halo, and thus is not further taken into account.

More formally, for each bright cell area at frame t, we examine its neighboring
region over consecutive frames prior to the frame t. If the proportion of the bright
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Algorithm 1 Apoptosis candidate detection at frame t

Input:
{B(s), D(s): binary images indicating bright/dark cell areas at frame s},
K: maximum number of frames investigated prior to the frame t,
R: radius of the neighboring region, th: threshold for bright/dark area change.
Output:
{(cx, cy)}: a set of (x,y) positions of candidate apoptotic cells.

1: // Compute dark/bright area change over consecutive frames prior to frame t
2: for k = 1→ K do
3: ∆Bk ← (B(t−k+1) −B(t−k)) filtered by the average disk filter with radius R.
4: ∆Dk ← (D(t−k) −D(t−k+1)) filtered by the average disk filter with radius R.
5: end for
6: // Examine bright/dark area change.
7: {Ci} ← a set of bright cell areas (lists of positions) at frame t, obtained from B(t).
8: for each Ci = {(xj , yj)} do
9: found← false, k ← 0

10: while not found and k < K do
11: k ← k + 1
12: if ∃(x, y)∈Ci s.t. ∀j ∈ {1,· · · ,k},∆Bj(x, y)>th/k or ∆Dj(x, y)>th/k then
13: found← true
14: end if
15: end while
16: if found then
17: // Keep the point that shows the most brightness change over the k frames.
18: {(cx, cy)} ← {(cx, cy)} ∪ arg max(x,y)∈Ci

∑k
k′=1∆Bk′(x, y)

19: end if
20: end for

area expanded or dark area shrunk in the region to the region’s area is greater
than a certain threshold, then the bright cell area is considered a candidate for
an apoptotic cell. As the duration of cell shrinking and brightness change varies
(See Fig. 2.) and the image acquisition interval can also be different among
experiments, we investigate different numbers of frames (up to K frames) prior
to frame t. More specifically, if the change between every two consecutive frames
among the k + 1 preceding frames is greater than the reduced threshold th/k
for any k ∈ {1, · · · ,K}, then the bright cell area is considered a candidate for
an apoptotic cell. The detailed procedure of apoptosis candidate detection is
described in Algorithm 1.

The neighboring region is set to be a circle with radius R. Hence, this scheme
involves three parameters: K, R, and th. We set these parameters to achieve at
least a certain high level of recall (e.g., 99%) and as high a precision as possible
in candidate detection among the training data (Note that as th decreases, recall
increases while precision decreases.). K and R can also be determined based on
the observation of apoptosis duration and cell size/movement, respectively. In
our experiments, K, R, and th were set to be 5, 10, and 0.25, respectively.
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Fig. 3. Candidate patch sequences containing apoptosis (left) and non-apoptosis
(right): (a-c) apoptotic cells in contact with none, a living cell, and a (or a group
of) dead cell(s); (d-f) a change of halo, a (or a group of) dead cell(s), and mitosis.

2.3 Feature Extraction

Each candidate is tracked in the neighboring frames in order to incorporate tem-
poral information by using a standard correlation tracking method, resulting in
candidate patch sequences as shown in Fig. 3. Investigating temporal information
helps to avoid detecting mitosis, which shows similar visual change to apopto-
sis at the beginning, as well as bright halos and dead cells. This step involves
two parameters, the size of patch and the number of frames tracked on one side
(preceding or following a candidate), which can be set by a typical validation
scheme. In our experiments, they were set to be 50 pixels and 3 patches. From
each patch in a patch sequence, we extract the following features:

– Brightness change histogram binning to 16 bins,
– Rotation invariant uniform local binary pattern (LBPriu2) [5].

The former, which is computed on the difference between a patch and its
previous patch, captures brightness change over time, the major cue for apop-
tosis detection, more precisely and in more detail than the candidate detection
step. The latter captures the texture property of apoptotic cells, which is quite
different from that of non-apoptotic cells as apoptosis involves membrane bleb-
bing and the formation of apoptotic bodies. It is worth mentioning that these
features are robust to global illumination change due to experimental setting.

2.4 Candidate Validation

We applied a linear Support Vector Machine (SVM) to classify candidate patch
sequences. We tested several other classifiers used for mitosis detection, Hidden
Conditional Random Field (HCRF) [6] and its variations [2, 7]. All these classi-
fiers as well as an RBF kernel SVM did not outperform a linear SVM despite
their higher computational cost, presumably because visual features of apop-
tosis are less informative and more noisy in the sense that apoptosis does not
involve distinctive morphological features, such as a figure eight shape during
mitosis. Under such a circumstance, a max-margin classifier with a simple de-
cision boundary might be more effective to eliminate outliers or meaningless
patterns. After classification, the post-processing in [7] is conducted to prevent
one apoptosis from being detected multiple times.
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Fig. 4. The first (left) and last (right) frames of the data.

3 Experiments

We introduce the experimental setup and results with discussions.

3.1 Image and Ground Truth Acquisition

After C2C12 myoblastic stem cells were cultured for one day, Mitomycin C was
added to induce apoptosis. Afterward, three populations were imaged every 5
minutes over 45 hours, resulting in three sets of 540 image frames. As shown in
Fig. 4, most of cells were dead at the last frame. We manually annotated apop-
tosis by marking the center of each apoptotic cell after it shrinks and becomes
bright, obtaining 1154 cases in total. The image sequences and ground truths
are available on the first author’s web page (www.cs.cmu.edu/∼seungilh).

3.2 Evaluation

A detection is considered a true positive if an apoptotic cell is detected within
spatially 30 pixels and temporally 3 frames from an annotated location. If an
apoptotic cell is detected more than once, the only one that temporally the clos-
est to the ground truth was considered true positive, the others false positives.

We used one sequence as a training set and another one as a test set, testing
all six training-testing set pairs. We set all the parameters including the SVM
parameter through a four-fold cross validation on the training set.

3.3 Results and Discussions

Our method achieved an average precision of 93.0%±1.1% and an average recall
of 89.8%±1.4% for apoptosis detection. False positives mostly happened due to
rapidly changing halos and moving dead cells attached to living cells. Duplicate
detection sometimes occurred as apoptotic cells abruptly and considerably move
while they shrink or when cell internal contents spill out. False negatives mostly
happened when cells form a cluster in which multiple apoptosis simultaneously
occur or apoptotics cells are occluded by other cells, as shown in Fig. 5.

In the candidate detection step, our method detected almost all apoptosis
except a few cases (See Fig. 6.). The number of candidates were approximately
three times as many as the number of apoptosis.
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Fig. 5. Examples of undetected apoptosis after candidate validation. (a) As two cells
in contact with each other undergo apoptosis simultaneously, only one apoptosis is
detected. (b) An apoptotic cell is barely observable as it is covered with two dead cells.

Fig. 6. Examples of undetected apoptosis at the candidate detection step. (a) Apopto-
sis occurs without brightness change. (b) As a small apoptotic cell is located in contact
with a compact and dark cell, the bright apoptotic cell is considered the bright halo of
the dark cell and thus not detected at the bright cell area detection step.

Our model-based cell area detection is effective, particularly when cell density
is high and thus cells are in contact with one another and halos appear among
them. The scheme outperformed a cell area detection scheme based on intensity
thresholding by 3.3% and 10.3% in terms of average apoptosis detection precision
and recall, respectively, on the last 100 frames of the three sequences.

4 Conclusion

We have presented an apoptosis detection method for adherent cells that de-
tects apoptosis candidates and then validates them. For the candidate detec-
tion, we proposed a cell area detection method based on the optical principle of
phase-contrast microscopy. When applied to three cell populations, our method
achieved around 90% accuracy in terms of average precision and recall.
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