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Abstract— We propose a learning-based algorithm to detect 

various types of cells in phase contrast microscopy images. The 

algorithm automatically adapts to different cell types by learning 

variations in cell appearances and shapes, while staying 

discriminative against non-cell distractions in the background. 

Benefiting from a rich set of carefully designed feature 

descriptors, the proposed algorithm is able to detect considerably 

different types of cells with high accuracy. With experimental 

results achieving an average detection F-measure of 90%, the 

statistical learning framework proposed in this paper has proven 

to be promising in evolving into a highly adaptive and robust cell 

detection system. 

I. INTRODUCTION 

Computer vision based automated analysis of stem cell 

behaviors plays a crucial role in facilitating rapid biological 

discoveries and effective clinical applications. Unlike humans, 

computers can monitor cell population continuously for an 

extended period of time, during which many otherwise unseen 

or unnoticed phenomena could be discovered [1]. 

In automated systems, single-frame cell detection is a key 

component, as cells must be reliably detected in each frame 

before further analysis such as tracking could be effectively 

performed [2]-[4]. Cell detection entails identifying a subset of 

pixels belonging to the cell region, and grouping them to each 

individual cell. Although temporal information could be 

employed to help disambiguate detection results [2], [8], the 

overall system performance would benefit from improved 

single-frame cell detection.  However, robust single-frame cell 

detection is challenging, as shown in a phase contrast 

microscopy image of C2C12 muscle stem cells on the left side 

of Fig. 1, where hundreds of cells take a large variety of 

shapes, appearances and sizes in a background with many 

distractions (such as the black rings). The task becomes harder 

if the detection algorithm is expected to be applicable to 

various types of cells under different imaging conditions 

without tuning any parameters. For example, both the cells 

and the background in the right image of Fig. 1 exhibit 

different characteristics than those in the left image. This 

paper focuses on developing an effective single-frame cell 

detection algorithm that could automatically adapt to intra-

type and inter-type variations of cell shapes and appearance in 

phase contrast microscopy images. To our knowledge, little 

effort has been devoted to solving this problem in the 

literature. 

Many existing approaches detect cells by making use of the 

fact that cells in phase contrast microscopy images appear as 

darker regions surrounded by brighter halos. Usaj et al. 

convolve an inverted Laplacian of Gaussian (LoG) with the 

image and pick the local extrema as cell centers [5]. This 

approach is ineffective when the sizes of cells vary across the 

image. Another method is proposed by Ersoy et al. which 

selects local extrema of image intensity as candidate cell 

points, and filters them by comparing their principal intensity 

curvature to a threshold [6]. This method is vulnerable to 

background distractions as they also form local extrema with 

large intensity curvature. In a different approach, intensity 

histograms are used to distinguish cells from background with 

Otsu’s thresholding [7] and/or maximum a posteriori criterion 

[8], [9], [11]. However, such a generative approach based on 

pixel intensity alone is not discriminative when cells are 

brighter or background is darker than usual. Furthermore, this 

method is not applicable to cases in which cells and 

background have similar intensity distributions. To improve 

the performance of cell detection, Li et al. propose a powerful 

preconditioning method that transforms the captured image so 

that cell regions obtain higher intensity in the transformed 

image [13]. Nevertheless, prior knowledge of the imaging 

system must be acquired, and the parameters of this method 

require careful manual tuning for each cell type. 

Grouping detected cell pixels into individual cells is equally 

challenging. The most straightforward way takes each local 

extrema as a cell [5]. Another approach applies a threshold to 

the cell-likelihood of the detected pixels, and the connected 

regions in the thresholded image are associated with 
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Fig. 1.  Examples of two different types of cells under phase contrast 

microscopy. Left: C2C12 muscle stem cells. Right: bovine aortic endothelial 

cells 
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individual cells [8], [9], [11], [13]. The method in [6] finds 

accurate cell boundaries by employing geodesic active contour 

evolution. However, this algorithm is not able to separate 

different cells when they touch on one another. An enhanced 

watershed algorithm is developed to separate the detected cell 

regions that are connected [7]. Nevertheless, this method 

works well only when the connected regions share a relatively 

short boundary. 

A common problem facing all the aforementioned 

algorithms is that they make strong assumptions of cell 

structures and rely on rigid criteria. As a consequence, they 

are not able to adapt to a wide range of complex scenarios. 

To enhance adaptability, we propose to detect cells using 

statistical learning techniques that enable the algorithm to learn 

the underlying structures of both cells and background. After 

candidate detection points are generated by preprocessing steps, 

a rich set of image features (called unary features) is extracted 

around each of those points, and a discriminative model is 

trained to determine if a candidate detection point indeed 

belongs to a cell. Another set of image features (referred to as 

pairwise features) is computed for each pair of cell points to 

train another discriminative model that predicts if the two cell 

points belong to the same cell or different cells, which is then 

used by a grouping algorithm to cluster points belonging to the 

same cells. The overall scheme of the proposed algorithm is 

illustrated in Fig. 2.  

As modern learning algorithms could account for much 

within-class variation, the proposed algorithm is highly 

flexible. Meanwhile, the discriminatively trained models make 

the algorithm effective in rejecting non-cell regions. While 

statistical learning techniques have found much success in 

natural image understanding [10], [12], [14], they are seldom 

applied to cell detection in microscopy images. Although 

some researchers use learning-based approaches to analyze 

microscopic images, most of them are for purposes other than 

cell detection [21], [22]. This paper makes an initial attempt to 

address the cell detection problem within the framework of 

statistical machine learning. A high level of detection accuracy 

(with F-measures around 90%) is achieved for both the 

disparate cell types in Fig. 1 without the need to manually tune 

any parameters. 

The remainder of this paper is organized as follows. Section 

II describes the preprocessing steps that generate candidate 

detection points. The classification of candidate detection 

points into cell or background is detailed in Section III. 

Section IV discusses the grouping of multiple detection points 

belonging to the same cell. Experimental results are given in 

Section V, and Section VI concludes the paper. 

II. PREPROCESSING 

The purpose of preprocessing is to mask out evident non-

cell pixels, and generate a relatively small number of 

candidate detection points for subsequent feature extraction, 

classification, and grouping. Here, a 100% recall is required 

while the number of points for further processing should be 

kept as low as possible. 

The preprocessing involves three steps. Firstly, a large 

portion of the texture-less image region can be directly 

determined as background and pruned away from further 

processing. To perform this task, a filter bank shown in Fig. 3 

is applied to the image. The filter bank consists of a set of 

anisotropic Laplacian filters at 6 different orientations and an 

isotropic Laplacian filter [16], [20], all of which have 6 

different scales. The squared responses of all the filters are 

summed to obtain the fluctuation energy at each pixel. The 

fluctuation energy of individual pixels is further normalized 

by the average fluctuation energy over the entire image to 

make this measure contrast invariant. Any pixel whose 

normalized fluctuation energy is lower than a pruning 

threshold is regarded as a background pixel and discarded. To 

maintain a high recall, the pruning threshold is set to be the 

lowest normalized fluctuation energy over the cell region in 

the training image for which the ground truth of cell segments 

is known. 

Secondly, among the remaining pixels, the local minima of 

image intensity are selected as candidate detection points, 

based on the observation that all cells under phase contrast 

microscopy contain at least one local minimum of intensity, 

despite the great variation of their appearances. The size of the 

image patch over which a local minimum is defined is the 

smallest spatial span of a cell which is obtained from the 

training image. This way, no cell is missed out and a high 

recall is preserved. 

Thirdly, the locations of candidate detection points are 

refined. Many candidate detection points that do belong to 

cells lie close to cell boundaries. For the convenience of 

further processing, it would be desirable to center those 

detection points. To achieve this goal, an algorithm similar to 

mean-shift mode detection [17] is employed. The location, , 

of a candidate detection point is updated iteratively. For each 

iteration,  

Fig. 3.  The filter bank consists of six groups of such filters, with standard 
deviations increasing from 1.5 pixels with a half-octave increment.     

Fig. 2.  Overall scheme of the proposed algorithm 
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where  is a square grid centered at , and  is the 

image intensity at position , ranging from 0 to 1. Note that 

both  and  can take non-integer values. Therefore,  

needs to be interpolated. The size of  is twice the standard 

deviation of the smallest filters in the filter bank. Unlike 

conventional methods, the weight of each point is the relative 

darkness at that point with respect to the minimal darkness 

over . Such normalization results in much faster 

convergence by emphasizing relative difference in darkness.    

The mean-shift operation refines the locations of candidate 

detection points in two aspects. Firstly, they are more centered 

within cells, as shown in Fig. 4(a). The reason behind this 

effect is that mean-shift converges when the “pulling forces” 

coming from around a point are balanced. In addition to 

centering the detection points, some of the points that are close 

together within the same cell end up converging to the same 

point, as shown in Fig. 4(b). Note that if two detection points 

belong to two different regions separated by a boundary, they 

will not get merged even if they are close to each other. 

III. PREDICTING CELL/BACKGROUND LABELS 

In this section, we discuss classifying each candidate 

detection point generated by the preprocessing steps into 

either belonging to cells or to the background. Due to the high 

variability of cell shapes and appearances, a discriminative 

model is expected to outperform a generative model. 

Therefore, we train a discriminative model to directly map 

image features to class labels (i.e. cell or background). 

For this discriminative model, the image region to extract 

features of a point is a square block centered at that point. The 

orientation and scale of the block is the orientation and scale 

of the filter that yields the largest response over the filter bank 

(referred to as the “best filter” in what follows). When the best 

filter is an isotropic Laplacian filter, the orientation of the 

block is set as zero. The block is then divided into 9 sub-

blocks, as is illustrated in Fig. 5. Five types of features are 

extracted for each sub-block, which are detailed below. 

As cells under phase contrast microscopy usually have 

bright halos, the first feature we use is normalized mean 

intensity, defined as the mean intensity of the sub-block 

normalized by that of the center sub-block. This feature 

reflects the center-surround intensity ratio.  

Since the spatial distribution of edgeness around a cell point 

is quite different from that of a background point, the second 

feature is selected as the mean gradient magnitude of the sub-

block.  

To further characterize the orientation distribution of the 

edges, the Histogram of Oriented Gradient (HOG) [15], [12] is 

used as the third feature. HOG computes the histogram of 

gradient orientations weighted by gradient magnitudes. Here, 

the size of orientation bins is set as 45o. 

Since a cell could be rather small, the sub-block sometimes 

does not contain sufficient pixels to generate a reliable 

histogram. To remedy this problem, we extract the fourth 

feature: mean relative gradient orientation weighted by 

gradient magnitude. Relative gradient orientation  of a 

pixel  is defined as 

          , (2) 

where  is the gradient orientation at ;  is the 

orientation of the best filter at the candidate detection point 

located in the center block. Both  and  are within 

. Equation (2) enforces the relative gradient orientation 

 to be within , meaning the polarity of 

gradient orientation does not matter, since cell boundaries 

normally contain edges of opposite polarities.  

To obtain the mean relative gradient orientation, one cannot 

simply compute the weighted average of  because of its 

cyclic nature. For example, the weighted average of 75o and    

-75o should be 90o (or equivalently, -90o), rather than 0o 

(suppose the weights are 1). This problem is solved by 

mapping  to a point on a unit circle through 

  where  and  are 

the coordinates of the point corresponding to , as is 

illustrated in Fig. 6. The mean relative gradient orientation is 

then represented by the weighted average of  and  

within the sub-block. 

Fig. 6.  Illustration of the mapping of relative gradient orientations to points 

on the unit circle. The red dot represents the orientation of the best filter, the 

green dots indicate several relative gradient orientations, and the blue dot 

shows the average of 75
o
  and -75

o
. 

-90o
90o

-45o

45o

0o

-75o

75o

Fig. 4.  The effect of refining candidate detection points using mean-shift. In 

(a) and (b), candidate detection points are represented by red dots; the left and 

right image shows the situation before and after the mean-shift operation, 

respectively.      

                       (a)                                                (b)     

Fig. 5.  Illustration of the image block and sub-blocks from which features 
are extracted.     
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Note that the mean coordinate  usually lies within the 

unit circle. The interpretation of such a coordinate is that its 

angle reflects the “hue” of the mean orientation, while its 

radius reflects the “saturation” of the mean orientation. The 

closer the coordinate is to the unit circle, the more uniform the 

orientations are within the sub-block. Using this definition, the 

paradox caused by the cyclic nature of the relative gradient 

orientation no longer exists. As is shown by the blue dot in 

Fig. 6, the mean of 75o and -75o is now indeed 90o, with a 

decreased saturation (i.e. uniformity). 

To eliminate false detections that are too big or too small to 

be a cell, the feature set also includes the scale of the best 

filter at the candidate detection point. 

The union of the five types of features of the nine sub-

blocks forms the unary features for each candidate detection 

point. Using the unary features, we employ a non-linear 

Support Vector Machine (SVM) [18] with a Gaussian kernel 

to discriminate cell points from background ones. Here, 

instead of directly using the hard predictions of the SVM, the 

training labels are fitted against the soft outputs of the trained 

SVM using logistic regression. The soft SVM outputs of the 

testing data are converted into posterior class probabilities 

 using the learned logistic regression model [19]: 

 

                    , (3) 

 

where  is the unary feature vector associated with point 

;  is the soft SVM output,  and  are the parameters of 

the fitted logistic regression model. All the points with 

 above a threshold are classified as belonging to 

cells. This threshold is automatically determined using cross-

validation on the training image. 

After predicting the labels of every candidate detection 

point, all those points labeled as background are removed. 

IV. GROUPING DETECTION POINTS WITHIN THE SAME CELL 

Having obtained the final detection points (i.e. cell points) 

using the cell/background classifier, we need to explicitly 

define a model to predict if two cell points are within the same 

cell, and if yes, group them. The following sub-sections 

describe the discriminative model that distinguishes within-

cell/between-cell relationships and the algorithm to group cell 

points after estimating the relationships. 

A. Predicting within-cell/between-cell relationships 

For a given pair of cell points, a set of eight pairwise 

features are extracted to predict if they are within the same cell 

or across different cells. 

If two cell points are within the same cell, there is typically 

a path from one point to the other that does not need to 

“climb” the bright ridge formed by the halos near cell 

boundaries. Therefore, we need to find a path that connects a 

pair of cell points with the least connecting effort. Here, “the 

least connecting effort” means that the maximum intensity 

along the optimal path is the lowest over all possible paths 

connecting the two points. That is, 

 

                     , (4) 

 

where  denotes a path connecting the two points and  is the 

optimal path with the least connecting effort. This path is able 

to circumvent isolated bright points within a cell and is 

therefore robust in determining if the two points belong to the 

same cell. 

To find such an optimal path efficiently, the image patch 

containing the two points is rotated such that the two points 

are on the same horizontal line. Then, dynamic programming 

is employed, in which a pixel is allowed to be linked with its 

six immediate neighbors to the left and right, and the search 

region is confined within the orange diamond-shaped region 

illustrated in Fig. 7(a). When several paths have identical 

connecting effort, the path with the smallest “bumpiness” is 

chosen. Here, the bumpiness of a path is defined as 

 

                      , (5) 

where  is the number of pixels on the connecting path, and 

 is the th pixel along the path. Two examples of the optimal 

connecting path are shown in Fig. 7(b). 

After the optimal connecting path is obtained, several 

Fig. 7.  (a):  Illustration of the search of the optimal connecting path. The 

dashed orange diamond delineates the search region, and a possible 

connecting path is illustrated with the black curve. (b): Two examples of the 
optimal connecting path which is indicated by the yellow curve. 

                    (a)                                                          (b)     

                            (a)                                                   (b)     

Fig. 8.  (a): Illustration of generating the best possible boundary. The red and 

green dots represent a pair of detection points. The red curve is the best 

hypothesis boundary. (b): Illustration of angular relationships among lines. 

The green dotted lines represent the direction perpendicular to the gradient 

orientation at the orange dots. (c): Two examples of the best possible 

boundary which is indicated by the blue/red curve. The color of the curve 
reflects its hypothetic boundary strength. More reddish means larger strength.  

                                                              (c)  
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features can be derived from it. The first feature is its intensity 

profile, obtained by equally dividing the path into five 

segments, and averaging the intensity of the pixels within each 

segment. This is essentially a down-sampled version of the 

pixel intensities along the optimal connecting path. In 

addition, the bumpiness of the optimal path (see Equation 5), 

the least connecting effort, and the ratio of the least connecting 

effort with respect to the intensities of the two cell points are 

also added to the pairwise feature set. 

A weakness of the optimal connecting path is that it could 

sometimes “sneak” through a boundary gap when two points 

belong to adjacent cells. As a remedy, we compute hypothetic 

boundary strength as the fifth feature. This feature measures 

the strength of the most likely boundary between two points 

even if there is actually no boundary, in which case the 

strength is low. 

The most likely boundary between two points is obtained as 

follows. Firstly, local maxima of gradient magnitude are 

identified on each of the five lines parallel to the line joining 

the two points. These lines have a total width of 5 pixels, as is 

illustrated in Fig. 8(a), where the local maxima are represented 

by orange dots. Secondly, dynamic programming is used to 

select one local maximum  on each line , such that the 

following objective function is maximized: 

 

 

 (6) 

 

where  reflects the consistency between the local edge 

direction and boundary direction, and  measures the angle 

between the boundary direction and the joining direction, as is 

illustrated in Fig. 8(b). The range of  and  is always 

between  and . Equation 6 encourages a boundary 

with large gradient magnitude, being smooth (i.e. small ), 

and perpendicular to the joining direction of the two cell 

points (i.e. large ).  and  are positive parameters which 

control the degree of regularization of angles. The specific 

values of  and  are not critical; setting  and  

suffices for most scenarios. Two examples of the most likely 

boundary are shown in Fig. 8(c). 

The hypothetic boundary strength is the value of  

corresponding to the most likely boundary: 

 

                               , (7) 

 

In addition to the features extracted above, we also notice 

that when the two points are within the same cell, their best 

filter orientations are typically aligned with their joining 

direction. Therefore, the sixth feature in the pairwise feature 

set is the relative orientations of the two cell points with 

respect to the direction of the line joining them.  

As additional clues, the pairwise feature set also includes 

the gradient magnitude and scale of the two cell points. 

The union of the eight types of pairwise features is used to 

train a non-linear SVM with a Gaussian kernel as well as a 

logistic regression model for probabilistic interpretation, as 

discussed in the previous section. Here, the probabilistic output is 

the probability of a pair of cell points belonging to the same cell, 

, given the pairwise feature vector 

. 

B. The grouping algorithm 

The intuition of the grouping algorithm is: two cell points 

should be grouped together if they have a high probability of 

belonging to the same cell according to the discriminative 

model described above. 

Ideally, we could compute  for all 

possible pairs of cell points. However, this turns out to be 

infeasible and unnecessary. Instead, each cell point  only 

has pairwise relationship with its five nearest cell points 

. For each of those five nearest neighbors , it is 

assigned to the same group as  if 

 is above a threshold which is 

automatically learned by cross-validation. In many cases, two 

cell points do not have direct relationship, yet they may still be 

grouped together through a chain of cell points that are 

considered as belonging to the same cell in a pairwise sense. 

In other words, the grouping process has a transitive property, 

making it unnecessary to deal with all possible pairs of cell 

points. 

V. EXPERIMENTAL RESULTS 

We first evaluate the performance of the proposed 

algorithm on bovine aortic endothelial cells imaged by 

Olympus IX71 microscope at X10 magnification. The first 

frame in a time-lapse sequence is used as the training image, 

and 10 other frames with a very different look are randomly 

chosen as testing images. The training image and one of the 

testing images are shown in Fig. 9. We continue to use this 

testing image as an example in what follows. Results on the 

other testing images are comparable. 

After preprocessing, most of the background region is 

excluded from further analysis according to the pruning 

threshold learned from the training image. To evaluate the 

effectiveness of pruning, the initial candidate detection points 

computed over the pruned image region are displayed on the 

right side of Fig. 10, whereas the points computed over the 

entire testing image are shown on the left side of Fig. 10. 

(Note that in practice there is no need to compute the initial 

candidate detection points over the entire image.) After the 

pruning, 100% of the candidate detection points that belong to 

cells survive the process, while the total image area to focus 

on shrinks by 68.28%, and the number of candidate detection 

points reduces from 5,229 to 701. This suggests that the 

learned pruning threshold is highly effective. 

The pruned points then undergo mean-shift refinement. The  

refined points are displayed on the left side of Fig. 11. After  

the refinement, the number of candidate detection points 

further reduces to 642, and many points become more 
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centered within cells. The probability of each refined point belonging to a cell is 

computed using the learned cell/background discriminative 

model. Applying the learned threshold, we get the 

cell/background label for each refined point, as is shown in the 

left image of Fig. 12, where magenta dots indicate cell points, 

and blue dots represent background points. Larger circle size 

indicates higher classification confidence. The correctness of 

this labeling is displayed in the right image of Fig. 12, where 

green dots indicate correct labels, and red dots represent 

wrong labels. Larger circle size indicates higher degree of 

correctness (or incorrectness). As we can see, most of the 

wrong labels occur close to cell/background borders and/or in 

cluttered ambiguous regions. After removing the candidate 

detection points classified as background ones, the final 

detection points are shown in the right image of Fig. 11. 

 
TABLE I  

ACCURACY OF THE TWO CLASSIFIERS 

 Classifier Proposed No Mean-shift 

Bovine 
Cell/background 88.47% 87.59% 

Within/between cell 90.91% 87.66% 

C2C12 
Cell/background 91.41% 90.96% 

Within/between cell 90.93% 89.68% 

 

 
TABLE II 

DETECTION PERFORMANCE UNDER VARIOUS SCENARIOS 

  Proposed 
No 

Group 

No 

MRGO 

No 

HBS 
No MS 

Bovine 

P 86.59% 70.63% 84.47% 84.64% 75.68% 

R 96.17% 96.17% 94.89% 96.17% 97.82% 

F 91.13% 81.44% 89.38% 90.04% 85.33% 

C2C12 

P 90.66% 48.92% 90.46% 90.25% 93.61% 

R 89.18% 92.45% 87.55% 88.78% 83.67% 

F 89.92% 63.98% 88.98% 89.51% 88.36% 

 

 

All the final detection points establish pairwise relationships 

with their five nearest neighbors, and the probability of a pair 

of points belonging to the same cell is computed for each pair 

using the learned pairwise classifier. The grouping algorithm 

is then applied to give the final result, as is shown in the left 

image of Fig. 13, where points within the same group are 

connected by lines. The green lines/dots indicate correct 

detections; the red lines/dots show incorrect detection points 

falling in the background; the blue lines/dots represent the 

detection points that are indeed cell points yet the cell has 

already been claimed by another group of points (i.e. over-

segment of a cell); the magenta regions are the ground truth 

cell masks for the cells that are not detected. For easy 

observation, the original testing image is displayed on the 

right side of Fig. 13. 

As we can see, many of the mistakes occur where the image 

region is highly ambiguous without resort to temporal 

information. Those mistakes could be corrected when 

Fig. 9.  Training and testing images for bovine aortic endothelial cells. Left: 
training image. Right: one of the testing images 

Fig. 10.  Pruning of candidate detection points which are indicated in red. 

Left: before pruning. Right:  after pruning. 

Fig. 11.  Refining and classifying of detection points. Left: after refining the 

candidate detection points. Right: after removing the candidate detection 
points classified as background. 

Fig. 12.  Labeling of the detection points. Left: Magenta dots indicate cell 

points and blue dots represent background points. Right: green points indicate 
correct labels and red points indicate wrong labels. 

Fig. 13.  Left: the final detection result. Right: the testing image. 
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temporal cues are incorporated in the future. 

The proposed algorithm is further evaluated quantitatively. 

Table I lists the average accuracy of the cell/background 

classifier with and without the mean-shift refinement over all 

the testing images, as well as that of the within-cell/between-

cell classifier. Both classifiers achieve an accuracy around 

90%, and the mean-shift refinement does help improve 

classification accuracy in both cases. 

The final detection result is shown in Table II, where the 

average precision (P), recall (R), and F-measure (F) over all 

the testing images are listed under various scenarios. We can 

see that the average F-measure of the proposed algorithm is 

above 91%, a promising result considering that only single-

frame information is used. The precision is around 86%, due 

to both false detections in the background and multiple 

detections within the same cell. Here, precision is defined in a 

strict sense: even if the detection points are indeed within the 

cell region, they are still counted as false positives if the cell 

they are associated with has already been claimed by other 

detection points. If this condition is relaxed, the precision of 

the proposed algorithm reaches 91.57%. 

The “No Group” column in Table II lists the result before 

detection points are grouped together. In this case, individual 

detection points are regarded as different cells. It is obvious 

that the precision would be low while the recall would be 

high. The goal of the grouping process is to raise the precision 

as much as possible while preserving the recall. Comparing 

the results in the “Proposed” and the “No Group” columns, we 

can see that the grouping algorithm successfully achieves this 

goal.  

The “No MRGO” and the “No HBS” columns in Table II 

are the detection performance when the mean relative gradient 

orientation or the hypothetic boundary strength is removed 

from the feature set, respectively. The drop of performance 

after the removal of these features confirms their respective 

roles of complementing the HOG feature and the optimal 

connecting path feature, as is stated in Sections III and IV. 

Again, applying the algorithm without the mean-shift 

refinement results in much decline in performance. 

The framework of statistical learning is intended to enable 

the proposed algorithm to adapt to different cell types without 

the need of any modification or tuning. To verify this claim, 

Fig. 14. Training and testing images for C2C12 muscle stem cells. Left: Training image. Right: one of the testing images. 

Fig. 15. The final detection result of C2C12 muscle stem cells for the example testing image. 
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we apply the proposed algorithm as is to the C2C12 muscle 

stem cells imaged by ZEISS Axiovert 135TV microscope at 

05X magnification. Same as before, the first frame is for 

training and 10 other frames in the sequence are randomly 

chosen for testing. The training image and one of the testing 

images are displayed in Fig. 14. 

For the example testing image, the learned pruning 

threshold preserves 100% of the candidate detection points 

while reducing the area of image under analysis by 71.38%, 

and the number of candidate detection points drops from 

21,038 to 3,661. After the mean-shift refinement, that number 

further decreases to 3,447. After the cell/background 

classification, between-cell/within-cell classification, and 

point grouping, the final detection result is displayed in Fig. 

15. Note that most of the missed cells are in the highly 

cluttered region where humans also have difficulty in labeling 

them. Many false detection points are located in the ends or 

corners of cells, which are also ambiguous to humans. 

The quantitative results on C2C12 cells are also listed in 

Tables I and II. As we can see, although the cells and 

background in this experiment are very different from the 

previous one, the proposed algorithm again approaches an 

average F-measure of 90%, and the accuracy of both 

classifiers remain high. The other conclusions drawn in the 

experiment of bovine cells could still be arrived in this 

experiment, again confirming the effectiveness of the 

proposed algorithm. 

VI. CONCLUSION 

This paper proposes a single-frame cell detection algorithm 

in phase contrast microscopy images. It employs statistical 

learning techniques to capture cell appearances and inter-cell 

relationships, so that cells with a wide range of variations in 

shapes and appearances can be effectively discriminated from 

the background and correctly separated. The proposed 

algorithm achieves high detection accuracy on two different 

types of cells imaged using different microscopes with 

different settings, using single-frame clues alone and without 

manual tuning of parameters. This demonstrates the promise 

of this approach as a general framework for detecting various 

types of cells captured under different imaging conditions.  

Future work includes extending the learning framework to 

temporal domain, and making the algorithm adaptive to 

different imaging modalities. 
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