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ABSTRACT

Automated cell tracking in populations is important for re-
search and discovery in biology and medicine. In this paper,
we propose a cell tracking method based on global spatio-
temporal data association which considers hypotheses of
initialization, termination, translation, division and false pos-
itive in an integrated formulation. Firstly, reliable tracklets
(i.e., short trajectories) are generated by linking detection
responses based on frame-by-frame association. Next, these
tracklets are globally associated over time to obtain final
cell trajectories and lineage trees. During global association,
tracklets form tree structures where a mother cell divides
into two daughter cells. We formulate the global association
for tree structures as a maximum-a-posteriori (MAP) prob-
lem and solve it by linear programming. This approach is
quantitatively evaluated on sequences with thousands of cells
captured over several days.

Index Terms— cell tracking, global data association

1. INTRODUCTION

Analysis of stem cell behaviors in populations is important for
research and discovery in biology and medicine. To obtain
the quantitative measurement of cell behaviors, time-lapse
microscopy videos consisting of hundreds of cells over thou-
sands of frames are recorded to track each cell’s dynamic pro-
cess. It is very time consuming for human to analyze this huge
amount of data manually, thus automated cell tracking is re-
quired to meet this demand.

To analyze stem cell behaviors, many cell tracking meth-
ods have been proposed which can be roughly classified into
two groups: model-based contour evolution approaches and
segmentation-based data association approaches. The model-
based contour evolution approaches, in particular level-set
methods, are widely used in cell segmentation and tracking
[1][2]. The tracking is performed by finding the object con-
tour in the current frame given an initial contour from the
previous frame. While these methods can handle changes
in topology, it is hard to handle the dividing cells, cells that
enter/leave the field of view. To handle these cases, Liet al.
[2] associate new cells with its parent cell as daughter cells
by using a local association method.

Segmentation-based frame-by-frame association approaches

have also been shown to be effective for cell tracking [3][4][5].
In [3], Al-Kofahi et al. segment the cell regions using an
adaptive thresholding method, and then, resolve the associa-
tion between two frames by optimizing probabilistic objective
functions based on distance measures. The authors men-
tioned that in some cases, multiple cells merge into a cluster
and eventually split apart, making tracking difficult, and they
did not address cells leaving or entering the field of view.
In [4], Padfieldet al. use the graph theoretic minimum cost
flow framework to resolve the data association in which the
hypotheses include various cell behaviors such as migration,
mitosis, overlap, entering and leaving. The method achieved
high accuracy in tracking and detecting cell behaviors for
the experiments. However, the method may confuse the cell
identities when cells touch or overlap for long frames. To
resolve the case in which cells overlapped for long frames, in
[5], Bise et al. proposed the contour tracking method based
on partial contour matching. The method firstly detects a
cluster in which multiple cells touch or overlap, and it then
separates the cell contour as its member cells. The separated
cells maintain their identities for the association problems in
the following frames.

These frame-by-frame association methods achieved high
tracking accuracy based on trajectory-level evaluation (how
well ground-truth cells are followed by computer-generated
tracks). However, it is still challenging to achieve high ac-
curacy based on lineage-level (tree structure) evaluation in-
cluding the correctness of the mother-daughter relationship.
For example, when a false positive segmentation appears near
a mitotic cell, the local temporal association methods may
cause a mother-daughter relationship error. To resolve the
problem, global temporal information is important. If we ob-
serve the cells for several frames after the birth event, we can
easily recognize that one of the children cells is false positive
since false positives usually disappear soon. This allows us to
correct the relationship.

Recently, global spatio-temporal data association ap-
proaches have been proposed for the general object tracking.
To associate multiple trajectories over time, Multi-Hypothesis
Tracking (MHT) [6] and Joint Probabilistic Data Association
Filters (JPDAF)[7] are two representative examples. To re-
duce the computational cost, tracklet stitching [8] is proposed.
Huanget al. [8] first generate reliable tracklets that are frag-
ments of tracks formed by conservative grouping of detection



Fig. 1. System Overview.

responses. The tracklets are then connected by the Hungar-
ian algorithm [9]. Bonneauet al. [10] proposed a tracklets
linking method in which a minimal path between tracklets
is obtained by using dynamic programming in order to track
quantum dots in a living cell. Zhanget al. [11] proposed a
minimum-cost flow network to resolve the global data associ-
ation of multiple objects over time. These global association
approaches are known as achieving higher accuracy of track-
ing general objects than frame-by-frame association methods.
However, these approaches cannot be applied to cell tracking
directly, since they do not consider cell division (a mother
cell divides into two daughter cells to form a tree structure in
the trajectory).

In this paper, we propose a global spatio-temporal data
association method for the tree structure to obtain cell trajec-
tories and lineage trees. Reliable tracklets (i.e., short trajecto-
ries) are firstly generated by linking detection responses based
on frame-by-frame association. The global tracklet associa-
tion for the tree structures is then formulated as a maximum-
a-posteriori (MAP) problem. The MAP problem is solved by
a linear programming to provide the cell trajectories and lin-
eage trees. This approach is evaluated on five sequences with
thousands of cells captured over several days. The results
show an improvement of the tracking performance compared
to our previous method [2] that used the level-set technique
for tracking.

2. ALGORITHM

Fig. 1 shows the overview of our cell tracking method. First,
cell detection module segments cell blobs from input images
that may include false positives and false negatives, and mi-
tosis detection module locates birth events where and when
one cell divides into two cells. Next, the detected cell blobs
are associated to reliable tracklets by a frame-by-frame data
association. Finally, the global association module associates
the tracklets to obtain cell trajectories and lineage trees.

2.1. Cell Detection

Due to the interference optics of a phase contrast microscope,
cells are surrounded by bright halos, and cellular fluid inside
the membrane has similar intensity as the background. To fa-
cilitate segmentation, we have adopted the image restoration
technique recently developed in [12]. The technique utilizes

Fig. 2. Examples of tracklets.

the optophysical principle of image formation by phase con-
trast microscope, and transforms an input image to an artifact-
free image by minimizing a regularized quadratic cost func-
tion. In the restored image, cells appear as regions of pos-
itive values against a uniformly-zero background. A simple
thresholding method, such as Otsu thresholding, can segment
out the cell regions. We denote the set of detection results as
R = {Ri} whereRi represents theith cell blob.

2.2. Cell Mitosis Event Detection

To detect the birth events (time and location at which one cell
divides into two cells), we have adopted the mitosis detection
technique recently developed in [13]. Firstly, as a mitosis
event generally exhibits an increase of brightness, bright
regions are extracted as patches, and then candidate patch
sequences are constructed by associated patches. Next, the
gradient histogram features are extracted from the patches.
Finally, a probabilistic model named Event Detection Con-
ditional Random Field (EDCRF) is applied to determine
whether each candidate patch sequence contains a birth event
and which frame the birth event is located in. The set of the
detected mitosis events is represented asM = {Mi} where
Mi is a detected mitosis event.

2.3. Tracklet Generation

Since a long trajectory obtained via frame-by-frame associa-
tion may include more failures, such as drift and occlusion,
than a short trajectory, we firstly associate the detected blobs
to make reliable tracklets. A tracklet is considered reliable
when cell blobs in consecutive frames are close enough, and
there are no extra confusing blobs near the cell. Fig. 2 shows
examples of extracted tracklets in which two cells migrate.
In this example, when the occlusions occur, it is not clear
if a detection response right after the occlusion is associated
with tracklet 1 or 2, so tracklet 1 and 2 are terminated at that
time. False negatives and large distance between the blobs



Fig. 3. An example of a tree structure hypothesis. Bottom il-
lustration shows zooming of an edge which consists of track-
lets.

also cause uncertain association, so tracklets 3 and 4 are also
terminated at that time.

For the implementation, we use a frame-by-frame asso-
ciation method to generate tracklets. The cell association al-
gorithm makes hypotheses of all possible cell translation and
computes their likeliness as:

Plink(bj |ci) = e−
∥f(ci)−f(bj)∥

σ

whereci represents theith cell in the previous frame andbj
represents thejth blob in the current frame.f(·) computes an
object’s feature vector where different types of features can be
incorporated such as appearance histogram, shape and motion
history. Then, the optimal association from the hypothesis set
is found by solving an integer optimization problem which
is similar to an optimization approach used by [2] for track
linking. The detected blob is linked to a cell if and only if
their likeliness is higher than a threshold.

Based on the frame-by-frame association, we generate a
set of reliable trackletsX = {Xi}. Xi = {Rij} is a track-
let consisting of an order list of detection results whereRij

indicates thejth detection result on the trackletXi. Any iso-
lated detection response that is not linked with any other one
is considered as a tracklet and also included inX. Unclear
associations are solved on the next step by using the global
data association.

2.4. Global Data Association

In this section, we propose a global data association method
which addresses the tree structure association problem.

Let T = {Tk} be a hypotheses set of cell trajectory trees
over the entire video. Each treeTk, corresponding to a cell
family from the ancestor to all of its descendents, is formed
by associated tracklets. We define a tree structure hypothesis
onTk using the following notations (Fig. 3):

1. Ek = {Eki}: a set of edges of the treeTk. Each edge is
defined as an order list of tracklets, i.e.,Eki = {Xj

ki
}

whereXj
ki

is jth tracklet on the edgeEki . Specifically,
Ek0 denotes the root edge of the tree.

2. Bk = {Bki}: a set of branch nodes of treeTk. Each
branch nodeBki defines a parent-children relationship,
Bki = {Ekpi

, Ekci1
, Ekci2

} (Ekpi
is a parent, and

Ekci1
, Ekci2

are children.)
3. Lk = {Ekli

}: a set of leaf edges of treeTk.

Given the observation tracklet setX, we maximize the
posteriori probability to solve for the best hypothesisT∗.

T∗ = argmax
T

P (T|X)

= argmax
T

P (X|T)P (T)

= argmax
T

∏
Xi∈X

P (Xi|T)
∏

Tk∈T

PTree(Tk) (1)

In Eq. 1, we assume that the likelihoods of input tracklets
are conditionally independent givenT, andTk ∈ T can not
overlap with each other, i.e.,Tk ∩ Tl = ϕ, ∀k ̸= l. The
likelihood of observed trackletXi is

P (Xi|T) =

{
PTP (Xi), if ∃Tk ∈ T, Xi ∈ Tk

PFP (Xi), otherwise
(2)

wherePTP (Xi) is the probability forXi being a true positive,
andPFP (Xi) is the probability forXi being a false alarm.
Ptree(Tk) is modeled as a Markov chain:

PTree(Tk) = Pini(Ek0)×
∏

Eki
∈Tk

Pedge(Eki)

×
∏

{Ekpi
,Ekci1

,Ekci2
}∈Bk, Bk∈Tk

Pdiv(Ekci1
, Ekci2

|Ekpi
)

×
∏

Ekli
∈Lk, Lk∈Tk

Pterm(Ekli
) (3)

wherePini is an initialization probability on the root of the
tree, andPterm is a termination probability on a leaf of the
tree. Pdiv(Ekci1

, Ekci2
|Ekpi

) is an edge dividing probabil-
ity in which edgeEkpi

divides into two edgesEkci1
, Ekci2

.
Under the Markov assumption, the edge probability can be
formulated as:

Pedge(Eki) =
∏

j=1:Nki
−1

Plink(X
j
ki
|Xj−1

ki
) (4)

wherePlink(X
j
ki
|Xj−1

ki
) is the probability to link tackletsXj

ki

andXj−1
ki

together,Nki is the number of tracklets on the edge
Eki . LetX0

ki
be the first tracklet ofEki , andXend

ki
be the last

tracklet ofEki . Under the Markov assumption, the initial-
ization, termination, and dividing probabilities can be formu-
lated as:

Pini(Ek0) = Pini(X
0
k0
), (5)

Pterm(Ekli
) = Pterm(Xend

kli
), (6)

Pdiv(Ekci1
, Ekci2

|Ekpi
) = Pdiv(X

0
kci1

, X0
kci2

|Xend
kpi

) (7)



After substituting Eqs. 2-7 into Eq. 1, we take a logarithm on
the objective function:

T∗ = argmax
T

{
∑

Xi /∈Tk, ∀Tk∈T

logPFP (Xi)

+
∑

Xi∈Tk, ∀Tk∈T

logPTP (Xi)

+
∑

X0
k0

∈Ek0
, Ek0

∈Tk, ∀Tk∈T

logPini(X
0
k0
)

+
∑

Xj
ki

, Xj−1
ki

∈Eki
, ∀Eki

∈Tk, ∀Tk∈T

logPlink(X
j
ki
|Xj−1

ki
)

+
∑

{Xend
kpi

, X0
kci1

, X0
kci1

}∈Bk, Bk∈Tk, ∀Tk∈T

logPdiv(X
0
kci1

, X0
kci2

|Xend
kpi

)

+
∑

Xend
kli

∈Ekli
, ∀Ekli

∈Lk, Lk∈Tk, ∀Tk∈T

logPterm(Xend
kli

)} (8)

The above MAP problem is solved by linear program-
ming. LetNX be the number of tracklets in the entire se-
quence, vectorρ stores the likelihoods of every possible hy-
pothesis and matrixC stores the constraints to avoid conflict
hypotheses, where each row ofC has2NX columns and each
column indicates tracklet index on the association between
two tracklets. We compute the entries ofρ andC based on
the following hypotheses.

1. Initialization hypothesis:
If the first blob of a trackletXk appears in the begin-
ning of the sequence or appears near the boundary of
the field of view, the tracklet is a candidate of a initial
tracklet. Leth be the index of a new hypothesis, we
append a new row toC and a corresponding likelihood
to ρ:

C(h, i) =

{
1, if i = NX + k
0, otherwise.

ρ(h) = logPini(Xk) + 0.5 logPTP (Xk)

2. Termination hypothesis:
If the last blob of a trackletXk appears in the end of the
sequence or appears near the boundary of the field of
view, the tracklet is a candidate of a termination track-
let. We define new entries forC andρ as:

C(h, i) =

{
1, if i = k
0, otherwise.

ρ(h) = logPterm(Xk) + 0.5 logPTP (Xk)

3. Translation hypothesis:
If the time and space distances between the last blob of
trackletsXk1 and the first blob ofXk2 are less than
thresholds,Xk1 → Xk2 is a candidate of a tracklet

Fig. 4. An integer programming example where the optimal
solution is highlighted by orange.

translation. We define new entries forC andρ as:

C(h, i) =

{
1, if i = k1 or i = NX + k2
0,otherwise.

ρ(h) = logPlink(Xk2 |Xk1)

+ 0.5 logPTP (Xk1) + 0.5 logPTP (Xk2)

4. Dividing hypothesis:
If the last blob of a trackletXp is near a birth event
detected by mitosis detection module, the tracklet is a
candidate of the parent tracklet, and if the first blobs
of some other trackletsXc1, Xc2 are near the candi-
date parent tracklet, these tracklets are candidates of the
children tracklets, we define new entries forC andρ as:

C(h, i) =

 1, if i = p or i = NX + c1,
or i = NX + c2

0, otherwise.

ρ(h) = logPdiv(Xc1 , Xc2 |Xp) + 0.5 logPTP (Xp)

+ 0.5 logPTP (Xc1) + 0.5 logPTP (Xc2)

5. False positive hypothesis:
All of the tracklets can be false positive. WhenXk is
a candidate of a false positive on the hypothesish, we
define new entries forC andρ as:

C(h, i) =

{
1, if i = k or i = NX + k
0, otherwise.

ρ(h) = logPFP (Xk)

A true positive tracklet appears in two and only two asso-
ciations in the optimal solution: the first blob of the tracklet
appears in an initialization, translation or dividing hypothe-
sis, and the last blob of the tracklet appears in a translation,
dividing or termination hypothesis. Thus,logPTP (Xk) in
the second term of Eq. 8 is divided into two halves that are
integrated into the two neighboring transition hypotheses re-
spectively, as described in hypotheses 1-4.



After makingM hypotheses overNX tracklets, the MAP
problem in Eq. 8 can be considered as selecting a subset of
rows ofC such that the sum of corresponding elements inρ is
maximized, under the constraint where any trees can not over-
lap with each other. This can be formulated as the following
integer optimization problem:

x∗ = argmax
x

ρTx, s.t. CTx = 1 (9)

wherex is aM × 1 binary vector, andxk = 1 means the
kth hypothesis is selected in the global optimal solution. The
constraintCTx = 1 guarantees that each tracklet ID appears
in only one associated tree or false positive tracklet. Fig. 4
shows a simple example of the linear programming where the
number of tracklets is 7 and the number of hypotheses is 18.
In the optimal solution, initial tracklet 1 is linked to tracklet 3
(i.e., tracklets 1, 3 are associated as a single edge tree). Initial
tracklet 4 divides into 5 and 6, tracklet 5 is linked to tracklet 7,
and tracklets 6 and 7 are termination tracklets (i.e., tracklets
4, 5, 6 and 7 are associated as a binary tree).

2.5. Implementation Details
In this section, we describe the estimation of the probabilities
in our framework. Letα be the miss detection rate of the cell
detector, and|Xi| be the number of total detection responses
in a trackletXi. The probabilities of false positive and true
positive are defined as:

PFP (Xi) = α|Xi| (10)

PTP (Xi) = 1− PFP (Xi) (11)

The initialization probability is defined based on the time
distance between the beginning of the sequence and the first
appearance frame of the tracklet, or the spatial distance be-
tween the boundary of the field of view and the cell centroid
for the cell entering case.

Pini(Xi) =


e−

dt0(Ri0
)

λ1 , if dt0(Ri0) < θt

e−
ds(Ri0

)

λ2 , if ds(Ri0) < θs
η otherwise (η is small)

(12)

whereRi0 is the first detection response of the trackletXi,
dt0(Ri) is the time distance between the first frame of the
sequence and the frame when the detection responseRi ap-
pears.ds(Ri) is the distance between the centroid of the de-
tection responseRi and the image boundary.λ1 andλ2 are
free parameters to adjust the distribution. If the first detection
response of the tracklet appears in both beginning of the se-
quence and near the boundary, we take a maximam one for
the probability.

The termination probability is defined in a similar way as
the initialization probability.

Pterm(Xi) =


e−

dtend(Riend
)

λ1 , if dtend(Riend
) < θt

e−
ds(Riend

)

λ2 , if ds(Riend
) < θs

η, otherwise(η is small)

(13)

Fig. 5. Example images of tracking results. Green contours
are segmented cell boundaries. Red color boxes are detected
mitosis events. The numbers in the images are cell ID. The
number on the top and bottom of the images are frame in-
dexes. The colors of cell IDs indicate their family identity.
Cells with the same color have the same ancestor.

whereRiend
is the last detection response of the trackletXi,

dtend(Ri) is the time distance between the last frame of the
sequence and the frame when the detection responseRi ap-
pears.

The link probability between two tracklets and the divid-
ing probability that one tracklet divides to two tracklets are
defined as:

Plink(Xj |Xi) = e−∥g(Rj0 )−g(Riend
)∥)/λ3 (14)

Pdiv(Xc1, Xc2|Xp)

= e−(∥g(Rpend
)−g(Rc10 )∥+∥g(Rpend

)−g(Rc20 )∥)/2λ3 (15)

whereg(·) computes an object’s feature vector in which dif-
ferent types of features can be incorporated such as appear-
ance time and motion history.λ3 is a free parameter to adjust
the distribution. Based on the cell movement history, we set
these parameter as:λ1 = 5, λ2 = 30, λ3 = 25, θt = 15,
θs = 40.

3. EXPERIMENTAL RESULTS

3.1. Tracking Results

Fig. 5 shows an example sequence of tracking results. The
cell 771 on the center of the image spreads out and the bound-
ary is ambiguous, thus, from frame 580 to 585, the cell are
segmented to multiple regions some of which are false posi-
tives. These false positives disappear in several frames, and
only one region can be associated with the tree. Since our
global association framework uses not only space and appear-
ance information but also temporal information, our method
tracks the cells well and recognizes the false positives. Using
the detected mitosis event information (red box in Fig. 5), the
proposed method makes a hypothesis of cell division, thus,
the two children cells 1928 and 1929 are correctly associated
to the parent cell 771.



Fig. 6. An example of space-time trajectory plot of a cell fam-
ily. (a) Tracklets. (b) A tree in which tracklets are associated
by global data association.

Fig. 7. Evaluation of mitosis branching.

Fig. 6(a) shows the tracklets before the global association
and Fig. 6(b) shows the associated tree after the global as-
sociation. There are 38 tracklets in Fig. 6(a) including false
positives and false negatives. The true positive tracklets are
well associated to a tree and false positive tracklets are re-
moved by global data association as shown in Fig. 6(b).

3.2. Quantitative evaluation
3.2.1. Data
We recorded five sequences captured at the resolution of
1040× 1392 pixels where C2C12 muscle stem cells growing
from 30+ to 600+ are imaged every 5 minutes by ZEISS Ax-
iovert 135TV phase contrast microscope at 5X magnification
over 65 hours (780 images). For one image sequence, all cells
are annotated. Since it is extremely time-consuming to anno-
tate all cells, for the other four image sequences, three cells
are randomly selected in the initial frame and their progeny
cells are manually tracked. The total number of annotated
cells in the five sequences is 124621.

3.2.2. Metrics
We use three quantitative criteria to assess the system per-
formance: track purity, target effectiveness [14], and mitosis
branching correctness.

To compute target effectiveness, we first assign each tar-
get (human annotated) to a track (computer-generated) that
contains the most observations from that ground-truth. Then
target effectiveness is computed as the number of the assigned
track observations over the total number of frames of the tar-
get. It indicates how many frames of targets are followed by
computer-generated tracks. Similarly, we define track purity
as how well tracks are followed by targets.

Track
Purity

Target
Effectiveness

Mitosis Branching
Correctness

Li et al. [2] 0.62 0.70 0.46
Ours 0.81 0.87 0.65

Table 1. Comparison of our system with [2] on a sequence
with all cells annotated.

Target
Effectiveness

Mitosis Branching
Correctness

ours Li et al. ours Li et al
exp1 0.96 0.75 0.75 0.25
exp2 0.87 0.7 0.65 0.63
exp3 0.87 0.68 0.59 0.39
exp4 0.78 0.6 0.57 0.2

average 0.87 0.68 0.64 0.37

Table 2. Comparison of our system with [2] on four se-
quences.

The mitotic branching correctness measured the accuracy
of mother-daughter relationships between tree branches. Fig.
7 shows an example of a mitosis branch, black lines indicate
ground truth trajectory, and red dotted lines indicate tracking
results. In the ground truth, there is a birth event at timet in
which cell i divides into cellj andk. If the automatic track-
ing results include a birth event of the celli′ that corresponds
to cell i, and childrenj′,k′ of the celli′ are also corresponded
to cell j andk, and the time distance between the two birth
events,ϵ = ∥t−t′∥, is close enough (i.e.,ϵ < θϵ), it is consid-
ered as a correctly detected mitosis branching. The correct-
ness of mitotic branching is the number of the correctly de-
tected mitosis branching over the total number of the mitotic
events. In the evaluation, we set the parameter asθϵ = 10.

3.2.3. Performance evaluation

Fig. 8 shows an example image of cell tracking with track
IDs and segmented regions. Cells are well segmented and
tracked in the population. Fig. 9 shows the space-time tra-
jectory plot of the whole sequence. It represents the complete
history of the cell population: motions of all the cells and
their lineage information. Fig. 10 shows examples of the lin-
eage trees compared to human annotated ones. Horizontal red
lines indicate tracks that follow the ground-truth, vertical red
lines indicate that the mitosis branching is correctly detected
on the branch nodes of the lineage tree. The results show that
the lineage trees are well constructed.

As shown in Table 1, our system achieves higher accuracy
on all of the performance metrics than the method presented
in [2] on the full-annotated sequence. Table 2 summarizes the
target effectiveness and mitotic branching correctness com-
parison on four image sequences1. On average, we improved
19% on target effectiveness and 27% on mitosis branching
correctness compared with [2].

1We are not able to compute track purity for the four partially-annotated
sequences because it needs all cells to be annotated.



Fig. 8. An example of tracking result image with track IDs
and segmented regions.

Fig. 9. A space-time trajectory plot of the whole sequence. X
and Y axes represent 2D space, Z axis represents time.

4. CONCLUSION

We proposed a global data association framework for cell
tracking problem. The proposed method can associate track-
lets to form not only sequential structures but also tree struc-
tures. The results of the data association provide the full cell
trajectories and lineage trees. Experimental results on a chal-
lenging data set show that the proposed method significantly
improves the tracking performance including target effective-
ness, track purity, mitosis branching correctness by globally
associating tracklets.
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