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ABSTRACT have also been shown to be effective for cell tracking [3][4][5].
Automated cell tracking in populations is important for re-m [3], Al-Kofahi et al. segment the cell regions using an
) 19 I pop > IMp : adaptive thresholding method, and then, resolve the associa-
search and discovery in biology and medicine. In this paper L e o
. ~tion between two frames by optimizing probabilistic objective
we propose a cell tracking method based on global spatiq-

temporal data association which considers hypotheses lfnCtiOI’]S based on distance measures. The authors men-
P yp floned that in some cases, multiple cells merge into a cluster

9 ) Y. did not address cells leaving or entering the field of view.

(i.e., short trajectories) are generated by linking detection

responses based on frame-bv-frame association. Next. th Ine[4], Padfieldet al. use the graph theoretic minimum cost
P 4 ation. XL, eEow framework to resolve the data association in which the

trackIer are gIobaIIy associated over time to obtaln_ f".qa ypotheses include various cell behaviors such as migration,
cell trajectories and lineage trees. During global association

. mitosis, overl ntering and leaving. The meth hiev
tracklets form tree structures where a mother cell divide tosis, overlap, entering and leaving e method achieved

. .. _high r in tracking an in Il behaviors for
into two daughter cells. We formulate the global association gh accuracy tracking and detecting cell behaviors fo

. o the experiments. However, the method may confuse the cell

for tree structures as a maximum-a-posteriori (MAP) prob- o
lem and solve it by linear proaramming. This aoproach is|dent|t|es when cells touch or overlap for long frames. To
uantitativel evalu);ted on ze %ences v%i‘th thousgr?ds of cel gsolve the case in which cells overlapped for long frames, in
ga tured ovgr several davs q g], Bise et al. proposed the contour tracking method based
P ys- on partial contour matching. The method firstly detects a
Index Terms— cell tracking, global data association cluster in which multiple cells touch or overlap, and it then

separates the cell contour as its member cells. The separated
1. INTRODUCTION cells maintain their identities for the association problems in

the following frames.

Analysis of stem cell behaviors in populations is important for ~ These frame-by-frame association methods achieved high
research and discovery in biology and medicine. To obtaiffacking accuracy based on trajectory-level evaluation (how
the quantitative measurement of cell behaviors, time-laps&ell ground-truth cells are followed by computer-generated
microscopy videos consisting of hundreds of cells over thoutracks). However, it is still challenging to achieve high ac-
sands of frames are recorded to track each cell’s dynamic préuracy based on lineage-level (tree structure) evaluation in-
cess. Itis very time consuming for human to analyze this huggluding the correctness of the mother-daughter relationship.
amount of data manually, thus automated cell tracking is reEor example, when a false positive segmentation appears near
quired to meet this demand. a mitotic cell, the local temporal association methods may
To analyze stem cell behaviors, many cell tracking methcause a mother-daughter relationship error. To resolve the
ods have been proposed which can be roughly classified inffoblem, global temporal information is important. If we ob-
two groups: model-based contour evolution approaches arfggrve the cells for several frames after the birth event, we can
segmentation-based data association approaches. The modasily recognize that one of the children cells is false positive
based contour evolution approaches, in particular level-séince false positives usually disappear soon. This allows us to
methods, are widely used in cell segmentation and trackingorrect the relationship.
[1][2]. The tracking is performed by finding the object con-  Recently, global spatio-temporal data association ap-
tour in the current frame given an initial contour from the proaches have been proposed for the general object tracking.
previous frame. While these methods can handle changd® associate multiple trajectories over time, Multi-Hypothesis
in topology, it is hard to handle the dividing cells, cells thatTracking (MHT) [6] and Joint Probabilistic Data Association
enter/leave the field of view. To handle these casestlal. Filters (JPDAF)[7] are two representative examples. To re-
[2] associate new cells with its parent cell as daughter cellduce the computational cost, tracklet stitching [8] is proposed.
by using a local association method. Huanget al. [8] first generate reliable tracklets that are frag-
Segmentation-based frame-by-frame association approasterds of tracks formed by conservative grouping of detection
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Fig. 1. System Overview.
responses. The tracklets are then connected by the Hungar- Large distance
ian algorithm [9]. Bonneaet al. [10] proposed a tracklets Tackleti  Tracklets N Gt
linking method in which a minimal path between tracklets
is obtained by using dynamic programming in order to track Tracklet2 o, OO  Tracklets Tracklet6
quantum dots in a living cell. Zharet al. [11] proposed a \

L. . Occlusion A
minimum-cost flow network to resolve the global data associ- False Negative
ation of multiple objects over time. These global association
approaches are known as achieving higher accuracy of track- Fig. 2. Examples of tracklets.

ing general objects than frame-by-frame association methods.

However, these approaches cannot be applied to cell trackirte optophysical principle of image formation by phase con-

directly, since they do not consider cell division (a mothertrast microscope, and transforms an input image to an artifact-

cell divides into two daughter cells to form a tree structure infrfé€ image by minimizing a regularized quadratic cost func-

the trajectory). tion. In the restored image, cells appear as regions of pos-

In this paper, we propose a global spatio-temporal dat#ive values against a uniformly-zero background. A simple

association method for the tree structure to obtain cell trajedhresholding method, such as Otsu thresholding, can segment

tories and lineage trees. Reliable tracklets (i.e., short traject@Ut the cell regions. We denote the set of detection results as

ries) are firstly generated by linking detection responses basd® = {12} whereR; represents théth cell blob.

on frame-by-frame association. The global tracklet associa- o .

tion for the tree structures is then formulated as a maximurmé-2- Ce€ll Mitosis Event Detection

a-posteriori (MAP) problem. The MAP problem is solved by To detect the birth events (time and location at which one cell

a linear programming to provide the cell trajectories and lin-divides into two cells), we have adopted the mitosis detection

eage trees. This approach is evaluated on five sequences witlthnique recently developed in [13]. Firstly, as a mitosis

thousands of cells captured over several days. The resuksent generally exhibits an increase of brightness, bright

show an improvement of the tracking performance comparerkgions are extracted as patches, and then candidate patch

to our previous method [2] that used the level-set techniqueequences are constructed by associated patches. Next, the

for tracking. gradient histogram features are extracted from the patches.
Finally, a probabilistic model named Event Detection Con-
ditional Random Field (EDCRF) is applied to determine

2. ALGORITHM whether each candidate patch sequence contains a birth event

and which frame the birth event is located in. The set of the

Fig. 1 shows the overview of our cell tracking method. First,jatected mitosis events is representedvhs= {M;} where
cell detection module segments cell blobs from input images; is 4 detected mitosis event. '

that may include false positives and false negatives, and mi-
tosis detection module locates birth events where and when3  Tracklet Generation

one cell divides into two cells. Next, the detected cell blobs_. | traiect btained via f by-f .
are associated to reliable tracklets by a frame-by-frame dat%'nce a long trajectory oblained via frame-by-lrame associa-

association. Finally, the global association module associat(%gm ma3:1|nf[:[[ud§ r?ore fa|ILf1_re§, such a}stdr;:]t a(rjldtoctclgstl)clant;
the tracklets to obtain cell trajectories and lineage trees. an a snort trajectory, we firstly associate the detected blobs
to make reliable tracklets. A tracklet is considered reliable

21 Cell Detection when cell blobs in conse(_:utive frames are close e_nough, and
" there are no extra confusing blobs near the cell. Fig. 2 shows
Due to the interference optics of a phase contrast microscopexamples of extracted tracklets in which two cells migrate.
cells are surrounded by bright halos, and cellular fluid insidén this example, when the occlusions occur, it is not clear
the membrane has similar intensity as the background. To faf a detection response right after the occlusion is associated
cilitate segmentation, we have adopted the image restoratiamith tracklet 1 or 2, so tracklet 1 and 2 are terminated at that
technique recently developed in [12]. The technique utilizesime. False negatives and large distance between the blobs



Tree: T}, whereX{:i is jth tracklet on the edg€,. Specifically,

Branch nodes: Leaf Edges: Ly, = {E, } Ey, denotes the root edge of the tree.
Bie = {By} Er By 2. Bx = {By,}: a set of branch nodes of trd&. Each
2N — —L branch nodeBy,, defines a parent-children relationship,
Root Edge: F . PE.,, - By, = {Ekm , Ekc“,Ekm} (E;% is a parent, and
B, L* _ ) : _{ Ek.. , Ek., are children.)
[ ) ﬁ‘? . . 3. Ly = {E},, }: aset of leaf edges of tre#..
2 ki - . . .
PN . Given the observation tracklet s&t, we maximize the
3 Edge: posteriori probability to solve for the best hypoth€esis
T EBEa={XL) X
i L ;i— ™ = arngaxP(T|X)
0 1 ~J end
K X N Xl — = argmax P(X|T)P(T)
Fig. 3. An example of a tree structure hypothesis. Bottom il- - _
lustration shows zooming of an edge which consists of track- - aeipx XI;IX P(X|T) TI_E[T Prrec(Tk) (1)
7 k

lets.
|In Eqg. 1, we assume that the likelihoods of input tracklets

also cause uncertain association, so tracklets 3 and 4 are also, conditionally independent giveh, andT}, € T can not

terminated ‘T"t that time. . overlap with each other, i.eZ, N1, = ¢,Vk # [. The
For the implementation, we use a frame-by-frame assoer"hood of observed trackleY : is

ciation method to generate tracklets. The cell association al-
gorithm makes hypotheses of all possible cell translation and _ ) Prp(Xy),if 3T, € T, X; € Ty,

> IR P(X;|T) = . )
computes their likeliness as: Prp(X;), otherwise

X ACD wherePrp(X;) is the probability forX; being a true positive,
and Prp(X;) is the probability forX; being a false alarm.
wherec; represents théh cell in the previous frame artg ~ Prree(Tk) is modeled as a Markov chain:

represents th¢th blob in the current framef.(-) computes an b
object’s feature vector where different types of features can be Preee(Tx) = Pini(Ero) % ][ Peage(Br)

]Dlink(bj|ci) =e

. . . Ey. €Ty

incorporated such as appearance histogram, shape and motion :

history. Then, the optimal association from the hypothesis set X H Piiv(Ek,,, s Bk, |Ek,,)

is found by solving an integer optimization problem which {Ep, Ere,; Ere,, Y€Bk, BTk

is similar to an optimization approach used by [2] for track

linking. The detected blob is linked to a cell if and only if X I PenE) @

their likeliness is higher than a threshold. By, €L, LicCThe

Based on the frame-by-frame association, we generate\ghere p,,,, is an initialization probability on the root of the
set of reliable trackletX = {X;}. X; = {R;;}isatrack- ee, andp,.,.. is a termination probability on a leaf of the
let consisting of an order list of detection results whé&e  {ge. Puiv(Ex. ,Ey. |Ex ) is an edge dividing probabil-
indicates thejth detection result on the trackl&f;. Anyiso- jty in which e(algeE,:z? divides into two edges), , By .
lated detection response that is not linked with any other onginder the Markov assumption, the edge probability can be
is considered as a tracklet and also includeXinUnclear  5rmulated as:
associations are solved on the next step by using the global

data association. Peage(Br)) =[] Pume (XL 1X070) 4
j=1:Ny, —1
2.4. Global Data Association whereP;,,, (X}, | X} is the probability to link tacklets;

In this section, we propose a global data association methcath{%_1 together Ny, is the number of tracklets on the edge

which addresses the tree structure association problem. £, . Let X} be the first tracklet ofzy,, and X "¢ be the last
Let T = {7} be a hypotheses set of cell trajectory treesracklet of £;,,. Under the Markov assumption, the initial-

over the entire video. Each trég, corresponding to a cell jzation, termination, and dividing probabilities can be formu-

family from the ancestor to all of its descendents, is formedated as:

by associated tracklets. We define a tree structure hypothesis

on T}, using the following notations (Fig. 3):

1. Ex = {E}, }: asetof edges of the trdg. Each edge is
defined as an order list of tracklets, i.&, = {X,Jci} Py (Ek

Pini(Ey,) = Pmi(ngo), )]
Pterm(Ekli) - Ptsrm(X]‘:Zd)a (6)
Bi.,|Br,.) = Paio(XP, X0 1XE) (7)

c1” Ep;



After substituting Egs. 2-7 into Eq. 1, we take a logarithm on
the objective function:

T*

Hypotheses p x

Q

> log Prp(X;)

X;¢Ty, VI,€T

arg m%x{

Space

+ Z log Prp(X;)

X €Ty, VILET
0

+ E log Pini(Xp,)

X2 EBkys By €Tk, VTR ET

J j—1

+ E log Prink (X3, 1 X3, )

X{ , X{~'€EBw,, VEy, €Ty, VILET

k3 k3

0 0
+ g log Pdw()(,%i1 , ka | X
{X;;’fi, Xgol, ch_l }€Bx, Bk€Tk, VILET

§ : end
+ 1Og Pterm(Xkli )}
XprdeBy, , VEg €Lk, Lc€Tk, VILET
i ‘1 3

i)

(8)

The above MAP problem is solved by linear program-

ming. Let Nx be the number of tracklets in the entire se-
quence, vectop stores the likelihoods of every possible hy-
pothesis and matrig’ stores the constraints to avoid conflict
hypotheses, where each row@has2Nx columns and each
column indicates tracklet index on the association between
two tracklets. We compute the entries @and C based on
the following hypotheses.

1. Initialization hypothesis:

. Translation hypothesis:

If the first blob of a trackletX; appears in the begin-
ning of the sequence or appears near the boundary of
the field of view, the tracklet is a candidate of a initial
tracklet. Leth be the index of a new hypothesis, we
append a new row t6@' and a corresponding likelihood

1, ifi=Nx+k

to p:
{ 0, otherwise
log Pini(Xy) + 0.5log Prp(Xy)

C(h, i)

p(h)

. Termination hypothesis:

If the last blob of a trackleX, appears in the end of the
sequence or appears near the boundary of the field of
view, the tracklet is a candidate of a termination track-
let. We define new entries far andp as:

; 1, ifi=~%
Clhyi) = { 0,  otherwise
p(h) = logpferm(Xk)+0510gPTp(Xk)

ini>1 | [0.7 | [o]o[oJofofofo[1]ofo]olola]o] [1oro

1>2 |[08]|[1]o]o]o]o]o]ola]1][o]o]o]o]0] [1or0

1>3 |[o8|[1]o]o]ofo]o]o]olo[1[o]oo]o] [1oro

> 3->term| (08 | [0]0[1]oololololo]o]o[olo]o] [1or0

\Qf/ini->4£00000000001i££10r0

5 7|l 4>5|[05][o]olo[1][o]ololo]a]o]o[1[0]0] [10r0

]\_,-.C\; 456 |06][alola[1]ololo]o]alolo]o]1]0] [10r0

5 4->56 || 06| [0o]o[o]1]o]ofoofo]olo[1]1]0] [1oro

o 527 [[07][o]o]ool1 o[o]ofofofo]olol1] [10or0

6->term| | 0.8 | |0/0/0]0|0]1]0[0|0|0|0[0|0|O]|10r0

7->term| (08 | [0]o[0[oo]o]1]o]o]o[o[alo]o] [1or0

1isFP | [02 ] [1]o]ololololo[1]o]o]ololo]o] [1or0

2isFP | [0.8] [o]1]o]o]oo]o]o]1 o]0 o]a]o] [10ro]

7isFP ] [0.1] [o]oJoJo]o]o]1]o]oJoJo]o]o[1] [1oro]
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Fig. 4. An integer programming example where the optimal
solution is highlighted by orange.

translation. We define new entries f0randp as:

N 1,if i =k ori = Nx + ks
C(h1) { 0, otherwise
p(h) = IOg Plink (Xk‘z ‘Xkl )

+ 0.5log Prp(Xy,) + 0.510g Prp(Xj,)
Dividing hypothesis:

If the last blob of a tracklefX,, is near a birth event
detected by mitosis detection module, the tracklet is a
candidate of the parent tracklet, and if the first blobs
of some other trackletX.;, X., are near the candi-
date parent tracklet, these tracklets are candidates of the
children tracklets, we define new entries €dandp as:

1, ifi=pori= Nx+ci,
ort = Nx + ¢

0, otherwise

p(h) = log Pyin(Xe¢,, Xy | Xp) + 0.510g Prp(X,)
+ 0.5 log PTP(XC1) + 0.510g PTP(XC2)

O(h,i) =

. False positive hypothesis:

All of the tracklets can be false positive. Whef), is
a candidate of a false positive on the hypothésise
define new entries fof’ andp as:

N 1,ifi=kori=Nx+k
Clh,1) = { 0, otherwise
p(h) = log PFP(Xk)

A true positive tracklet appears in two and only two asso-

ciations in the optimal solution: the first blob of the tracklet
appears in an initialization, translation or dividing hypothe-

sis, and the last blob of the tracklet appears in a translation,

dividing or termination hypothesis. Thukg Prp(X}) in

If the time and space distances between the last blob dhe second term of Eq. 8 is divided into two halves that are

tracklets X, and the first blob ofX}, are less than

integrated into the two neighboring transition hypotheses re-

thresholds, X, — X, is a candidate of a tracklet spectively, as described in hypotheses 1-4.



After making M hypotheses oveNx tracklets, the MAP
problem in Eq. 8 can be considered as selecting a subset -fame A 1‘;1608 G ¢ AT
rows of C' such that the sum of corresponding elemenisis : S 4
maximized, under the constraint where any trees can not ovejill g8 L sl ¥ 75
lap with each other. This can be formulated as the following o N | ;

integer optimization problem:
® 1559 o559

3 .
z* =argmaxplz, st Cloe=1 (9) o o b A5 \ 1642 o 608" 1692 g Joog)
x

o570 k4
2 L

wherex is a M x 1 binary vector, andc;, = 1 means the o 1617 S_Qr
kth hypothesis is selected in the global optimal solution. Thedde &
constraintC”'z = 1 guarantees that each tracklet ID appears 500
in only one associated tree or false positive tracklet. Fig. 4 _ )
shows a simple example of the linear programming where thElg. 5. Example images of t_racklng results. Green contours
number of tracklets is 7 and the number of hypotheses is 187€ sggmented cell boundarles_. Red_color boxes are detected
In the optimal solution, initial tracklet 1 is linked to tracklet 3 Mitosis events. The numbers in the images are cell ID. The
(i.e., tracklets 1, 3 are associated as a single edge tree). Initfd¢mber on the top and bottom of the images are frame in-
tracklet 4 divides into 5 and 6, tracklet 5 is linked to tracklet 7,déxes. The colors of cell IDs indicate their family identity.
and tracklets 6 and 7 are termination tracklets (i.e., tracklets€!lS with the same color have the same ancestor.

4,5, 6 and 7 are associated as a binary tree). ) _
whereR;_,, is the last detection response of the trackiet

2.5. Implementation Details dt.nq(R;) is the time distance between the last frame of the
In this section, we describe the estimation of the probabilitiesequence and the frame when the detection respBnsg-

in our framework. Lety be the miss detection rate of the cell pears.

detector, andX;| be the number of total detection responses  The link probability between two tracklets and the divid-

in a trackletX;. The probabilities of false positive and true ing probability that one tracklet divides to two tracklets are

positive are defined as: defined as:
Prp(X;) = ol (10)  Prni(X;]X;) = e 1900)=0(Ripy )0/ Aa (14)
Prp(X;) =1— Ppp(X;) (11) Pain(Xe1, Xea| X,)
The initialization probability is defined based on the time = ¢~ 9(Rpeq)=9(Rero) I +119(Ra,,, 4) =9 (Rezo ) ID)/22s (15

distance between the beginning of the sequence and the first L ] ) ]
appearance frame of the tracklet, or the spatial distance béhereg(-) computes an object's feature vector in which dif-
tween the boundary of the field of view and the cell centroidf€"ent types of features can be incorporated such as appear-

for the cell entering case. ance.tim.e af‘d motion history s a free paramet_er s
o the distribution. Based on the cell movement history, we set
T ,if dto(Ri,) < 6 tghese4(F)JafF:‘lmeter asy = 5, Ay = 30, A3 = 25, 0, = 15,
. ) — ds(R;g) s~ '
Pznz(Xt) - 6_4A2L’ if dS(RzO) < 05 (12)
n otherwise (7 is smal)

3. EXPERIMENTAL RESULTS
where R;, is the first detection response of the trackigt

dto(R;) is the time distance between the first frame of the3.1. Tracking Results

sequence and the frame when the detection respBnse-

. . ; Fig. 5 shows an example sequence of tracking results. The
pears.ds(R;) is the distance between the centroid of the de g P d g

‘cell 771 on the center of the image spreads out and the bound-

tection response; anq the |ma_ge.bogndary\1 ar'ud)\g are ary is ambiguous, thus, from frame 580 to 585, the cell are
free parameters to adjust the distribution. If the first detectlogegmented to multiple regions some of which are false posi-

response of the tracklet appears in both beginning of the Sfives. These false positives disappear in several frames, and

guence anq_ near the boundary, we take a maximam one f8F1Iy one region can be associated with the tree. Since our

the probablllt_y. . . ' . - global association framework uses not only space and appear-
The tgrm!natlon prop_ablhty is defined in a similar way S ance information but also temporal information, our method
the initialization probability. tracks the cells well and recognizes the false positives. Using
the detected mitosis event information (red box in Fig. 5), the
PRTS proposed method makes a hypothesis of cell division, thus,

Prerm(Xi) = e , if ds(R;., ) < 05 (13) " the two children cells 1928 and 1929 are correctly associated

n, otherwise(n is smal) to the parent cell 771.

dteng (R,

n )
e i dtena(Ri,,,) < 0




Track Target Mitosis Branching
Purity | Effectiveness Correctness
Lietal [2] | 0.62 0.70 0.46

Ours 0.81 0.87 0.65

Table 1. Comparison of our system with [2] on a sequence
with all cells annotated.

Target Mitosis Branching
Effectiveness Correctness
ours | Lietal. | ours Lietal
expl [ 096| 0.75 | 0.75 0.25
exp2 | 0.87 0.7 0.65 0.63

Fig. 6. An example of space-time trajectory plot of a cell fam-
ily. (a) Tracklets. (b) A tree in which tracklets are associated

by global data association. exp3 | 0.87] 0.68 | 0.59 0.39
€ p exp4 | 0.78 0.6 0.57 0.2
— ) average| 0.87| 0.68 | 0.64 0.37
1 - - ground . .
— J truth Table 2. Comparison of our system with [2] on four se-
STk - guences.
? _ _ tracking
o T result The mitotic branching correctness measured the accuracy
_tt of mother-daughter relationships between tree branches. Fig.
_ time _ o _ 7 shows an example of a mitosis branch, black lines indicate
Fig. 7. Evaluation of mitosis branching. ground truth trajectory, and red dotted lines indicate tracking

Fig. 6(a) shows the tracklets before the global associatiofESults- In the ground truth, there is a birth event at tinte

and Fig. 6(b) shows the associated tree after the global ahich celli divides into cellj andk. If the automatic track-

sociation. There are 38 tracklets in Fig. 6(a) including falsd"d results include a birth event of the célthat corresponds

. ; TN o
positives and false negatives. The true positive tracklets af@ Cell% and childrery’,k” of the celli’ are also corresponded

well associated to a tree and false positive tracklets are rd@ Cell 7 andk, and the time distance between the two birth

moved by global data association as shown in Fig. 6(b). ~ €VeNtse = lt—#'l|, is close enough (i.ee,< 06).’ itis consid-
ered as a correctly detected mitosis branching. The correct-

3.2. Quantitative evaluation ness of mitotic branching is the number of the correctly de-
3.2.1. Data tected mitosis branching over the total number of the mitotic

We recorded five sequences captured at the resolution §Vents. In the evaluation, we set the parameté as 10.

1040 x 1392 pixels where C2C12 muscle stem cells growing3 23 Performance evaluation

from 30+ to 600+ are imaged every 5 minutes by ZEISS Ax-""""" ) ) _

iovert 135TV phase contrast microscope at 5X magpnificatior'9- 8 shows an example image of cell tracking with track
over 65 hours (780 images). For one image sequence, all cell@s and segmented regions. Cells are well segmented and
are annotated. Since it is extremely time-consuming to anndtacked in the population. Fig. 9 shows the space-time tra-
tate all cells, for the other four image sequences, three celi§ctory plot of the whole sequence. It represents the complete
are randomly selected in the initial frame and their progenytistory of the cell population: motions of all the cells and
cells are manually tracked. The total number of annotatef€ir lineage information. Fig. 10 shows examples of the lin-

cells in the five sequences is 124621. eage trees compared to human annotated ones. Horizontal red
lines indicate tracks that follow the ground-truth, vertical red
3.2.2. Metrics lines indicate that the mitosis branching is correctly detected

We use three quantitative criteria to assess the system pe&mn the branch nodes of the lineage tree. The results show that
formance: track purity, target effectiveness [14], and mitosi¢he lineage trees are well constructed.
branching correctness. As shown in Table 1, our system achieves higher accuracy
To compute target effectiveness, we first assign each tapn all of the performance metrics than the method presented
get (human annotated) to a track (computer-generated) thix [2] on the full-annotated sequence. Table 2 summarizes the
contains the most observations from that ground-truth. Thetarget effectiveness and mitotic branching correctness com-
target effectiveness is computed as the number of the assignpdrison on four image sequente®n average, we improved
track observations over the total number of frames of the tart9% on target effectiveness and 27% on mitosis branching
get. It indicates how many frames of targets are followed byorrectness compared with [2].

computer-generated tracks. Similarly, we define track purity 1ywe are not able to compute track purity for the four partially-annotated
as how well tracks are followed by targets. sequences because it needs all cells to be annotated.




Lineage Tree: Target Effectiveness = 95.63%
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Fig. 8. An example of tracking result image with track IDs 0000 0420 OBAD 1300 1720 210 B et Time (o 4740 9200 9020 €040 6500
and segmented regions.

Fig. 10. Lineage trees and performance evaluation (thin black
lines: three human annotated lineage trees; overlaid thick red
lines: correctly-tracked cells by our system).
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