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ABSTRACT

The wound healing assay in vitro is widely used for research
and discovery in biology and medicine. This assay allows for
observing the healing process in vitro in which the cells on
the edges of the artificial wound migrate toward the wound
area. The influence of different culture conditions can be
measured by observing the change in the size of the wound
area. For further investigation, more detailed measurements
of the cell behaviors are required. In this paper, we present an
application of automatic cell tracking in phase-contrast mi-
croscopy images to wound healing assay. The cell behaviors
under three different culture conditions have been analyzed.
Our cell tracking system can track individual cells during the
healing process and provide detailed spatio-temporal mea-
surements of cell behaviors including cell density, cell mi-
gration speed and direction, and the statistics of cell mitosis
events. The application demonstrates the effectiveness of au-
tomatic cell tracking for quantitative and detailed analysis of
the cell behaviors in wound healing assay in vitro.

Index Terms— Cell Tracking, Wound Healing Assay

1. INTRODUCTION

We present an application of automatic cell tracking for
wound healing assay in vitro. The wound healing assay is
an easy and low-cost method to allow for observing cell mi-
gration in vitro [1]. In this assay, cells are firstly grown to
form a confluent monolayer in vitro. An artificial wound is
generated by scratching and displacing a group of cells at
the center as shown in Fig.1, and then the healing process
is observed while neighboring cells fill in the wound area
as shown in Fig.2 (a-c). This healing process takes 3 to 24
hours, depending on cell types and culture conditions. The
healing process is monitored by a sequence of microscopic
images.

The wound healing assay has been widely used in tissue
culture to monitor cell behaviors under various culture con-
ditions. Liang et al. [1] compared several migration assays
in vitro and described advantages of using the wound healing
assay that mimics cell migration in vivo. For example, en-
dothelial cells (ECs) in vitro mimic the process in which ECs
in the blood vessels migrate into the denuded area to close

Fig. 1. The process of making wound.

Fig. 2. Example images of the wound healing process. (a) the
initial image on the healing process. (b) an image at which
cells move to wound area. (c) an image at which cells fill the
wound area.

the wound. Yarrow et al. [2] measured the healing speed by
observing the size of the wound area in order to analyze the
effectiveness of different culture conditions. For further anal-
ysis of the effectiveness of the cell culture condtions, more de-
tailed measurements of the cell behaviors are often required.
For example, Abbi et al. [3] analyzed the cell migration path
to assess the effects of expression of exogenous genes on mi-
gration of individual cells. Nikolic et al. [4] manually tracked
cell migration in wound healing assay in order to understand
how multiple cells execute highly dynamic and coordinated
movements during the healing process. Cell tracking allowed
them to analyze how individual aspects of the wound con-
tribute to the coordinated dynamics of cells. Zahm et al. [5]
used a computer-assisted technique to quantitatively study the
cell proliferation and migration during the wound healing pro-
cess. Citing the difficulty of tracking cells in phase-contrast
microscopy images, they used chemical compounds to create
fluorescent images to track cells and count proliferative cells.
Such chemical compounds generally interfere with the effi-
cacy of drug candidates. Bunyak et al. [6] developed a cell
tracking method for phase-contrast microscopy images and
computed the time transition of the cell migration measures
for 46 frames of a wound healing sequence.

In this paper, we present the application of our automatic



Fig. 3. Process of the cell tracking.

cell tracking method to long sequences of phase-contrast mi-
croscopy images of a wound healing assay in vitro in order
to produce detailed quantitative analysis of the cell behaviors
under three different culture conditions (i.e., three different
amounts of medicine Latrunculin B that interferes with cel-
lular activity). Our cell tracking system can track more than
thousands of cells individually over long period under non-
fluorescent imaging. It allows us to compute spatio-temporal
measurements including the cell density, migration speed and
direction, statistics of mitosis events, and their mutual depen-
dency. These measurements can provide critical data for in-
vestigating the healing process.

2. AUTOMATIC CELL TRACKING METHOD

Fig. 3 shows the overview of our cell tracking system. Each
image is processed in four steps: 1) cell detection detects
and isolates blobs that can be individual cells or cell clusters
(overlapping cells); 2) mitosis event detection locates mitosis
events where and when one cell divides into two cells; 3) cell
association performs data association between the cells in the
previous frame and the blobs detected in the current frame as
well as identifying cell clusters; 4) separation of overlapping
cells decomposes each cell cluster to its member cells by us-
ing contour matching.

2.1. Cell Detection
Due to the interference optics of a phase contrast microscope,
cells are surrounded by bright halos, and cellular fluid inside
the membrane has similar intensity as the background. To fa-
ciliate segmentation, we have adopted the image restoration
technique recently develped in [7]. The technique utilizes the
optophysical principle of image formation by phase contrast
microscope, and transforms an input image into an artifact-
free images by minimizing a regularized quadratic cost func-
tion. In the restored image, cells appear as regions of pos-
itive values against a uniformly-zero background. A simple
thresholding method, such as Otsu thresholding, can segment
out the cell regions.

2.2. Cell Mitosis Event Detection
In the wound healing assay, it is important to locate indi-
vidual cell birth event (time and location) at which one cell
divides into two cells. To detect the birth events, we have
adopted the mitosis detection technique recently develped in

[8]. Firstly, as mitosis events generally exhibits increase of
brightness, bright regions are extracted as patches, and then
candidate patch sequences are constructed by associating
patches. Next, the gradient histogram features are extracted
from the patches. Finally, a probabilistic model named Event
Detection Conditional Random Field (EDCRF) is applied to
determine whether each candidate contains a birth event and
which frame the birth event is located in.

2.3. Cell Tracking
Based on the outputs of cell segmentation and mitotic event
detection algorithms, we developed a cell-blob association al-
gorithm performing data association between the cells in the
previous frame and the blobs segmented in the current frame.
The cell association algorithm makes the following hypothe-
ses of all possible cell action and computes the likeliness of
each hypothesis.
(1) one-to-one: a cell migrates to a new position;

If the distance between the cell ci in the previous frame
and the blob bj in the current frame, ci → bj is a candicate of
the migration hypothesis.

P1→1(ci, bj) = e−
∥f(ci)−f(bj)∥

σ

(2) one-to-none: a cell exits from the field of view;
If the distance between the centroid of the cell at previ-

ous frame and the boundary of the field of view, the cell is a
candidate of exit cells.

P1→0(ci) = e−
d(ci)

λ

(3) none-to-one: a cell enters to the field of view;
If the distance between the centroid of the blob at current

frame and the boundary of the field of view, the cell is a can-
didate of enter cells.

P0→1(bi) = e−
d(ci)

λ

(4) one-to-two: a cell divide into two cells;
If a cell ci is near a birth event detected by mitosis de-

tection module, the cell is a candidate of a parent cell, and if
combination of blobs bj1 , bj2 are near the candidate of parent
cells, these blobs are candidates of the children cells.

P1→2(ci, bj1 , bj2) = e−
∥f(ci)−f(bj1

,bj2
)∥

σ

(5) many-to-one: multiple cells overlap;
If several cells are close to each other in the previous

frame and a nearby large blob is detected in the current frame,
those cells have a many-to-one hypothesis

Pn→1(ci1 , ..., cin , bj) = e−
∥f(ci1

,...,cin
)−f(bj)∥

σ

where ci represents the ith cell and, bj represents the jth blob.
f(·) computes an object’s feature vector where different types
of features can be incorporated such as appearence histogram,
shape and motion history. And d(ci) is the distance between
the centroid of cell ci and the image boundary. σ and λ are
free parameters to adjust the distribution. For more details of
these hypotheses and formulations, we refer to [10].



Fig. 4. Right: an example image of the tracking result. Left: an example image sequence of the zooming images that correspond
with the white dot rectangle in the right image.

Fig. 5. Flow of our wound healing assay experiments under three culture conditions.

control 10nM 100nM average
Li et al. [9] 0.71 0.73 0.74 0.73

Ours 0.83 0.92 0.76 0.84

Table 1. Comparison of our system with [9].

The optimal association from the hypothesis set is found
by solving an integer optimization problem which is similar
to an optimization approach was used by [9] for track linking.
When the system identifies a cell cluster (multi-to-one associ-
ation), we apply a contour-matching method [11] to separate
it into its member cells, thus the cell identities are maintained.
Fig.4 shows an example of the tracking result where the cells
are well tracked in high confluence.

2.4. Performance Evaluation
The open area (wound area) is observed by a phase contrast
microscope under three different cell culture conditions (we
explain the conditions on the next section). The images are
captured every 5 minutes and each sequence consists of 200
images with the resolution of 1392*1040 pixels. To make
groundtruth, we randomly pick forty cells at the beginning
of each sequence and annotate the forty cells family trees
through the 200th image. The total number of annotated cells
in the three sequences is 27991.

We use a target effectiveness [12] to assess the system
performance. The target effectiveness is defined as the num-
ber of target observations (human annoated) matched to the

best track (computer-generated) over the total number of tar-
get observations. It indicates how well targets are followed
by tracks. As shown in Table 1, our system achieves higher
target effectiveness than the state-of-the-art method in [9] on
the sequences.

3. SPACE-TIME ANALYSIS OF CELL BEHAVIORS
OF WOUND HEALING

We demonstrate how our automatic cell tracking can help to
analyze the cell behaviors. Fig. 5 shows the overall flow of
our wound healing analysis experiment. Firstly, the culture
dishes with wound area are prepared under three culture con-
ditions. These dishes are observed by microscope, generating
a time-lapse image sequence. The image sequences are in-
putted to the automatic cell tracking system. From the track-
ing results, various measurements that characterize the cell
behavior are calculated.

3.1. Cell Culture Conditions
On three dishes, BAEC(bovine aortic endothelial cells) were
cultured under three different culture conditions. For each
dish, a group of cells at the center of the dish was scratched
and displaced on a confluent monolayer. Different amount of
medicine was added to each dish.
Condition A : control (no medinine)
Condition B : 10nM (nano molar) of Latrunculin B
Condition C : 100nM of (nano molar) Latrunculin B



Fig. 6. The jet map of cell den-
sity changes over time with track-
ing results, each row of which repre-
sents the density. In the jet map, red
color shows higher density, blue color
shows lower density. Fig. 7. The space-time transition of the cell density.

Fig. 8. The average speed of the cell migration
over the time.

Fig. 9. Local areas. Fig. 10. The average speed of the cell migra-
tion at each local area.

3.2. Cell Behavior Characteristic Measurements

Using tracking results, we calculated various measurements
of cell behavior characteristics. In cell behavior analysis, the
change of the cell density over time on the whole area is a use-
ful index [13][14]. To investigate how the cell culture condi-
tions affect the cell migration, speed and direction of the cell
migration are often measured [13][15]. Cell culture condition
usually affects both migration and proliferation. To separate
these affects, the statistics of the mitotic events are important.
Our system allows us to compute all of these spatio-temporal
behavior characteristics in detail, including cell density, the
speed and the direction of cell migration, and the statistics of
mitosis events.

3.2.1. Cell Density

Fig. 6 and 7 show how the cell density changes over time
and location. Since cells generally migrate horizontally in the
experiments as shown in Fig.2, the cell density is computed
over narrow vertical window (the width of the window is 40
pixels, i.e., 36.5 µm) as shown in Fig. 7(a). The vertical
lines show that the 95% cell migration front of left and right

sides, which is defined as the 95th percentile line of the total
cell count of each side. Red color lines indicate the 95% line
at the inital frame, blue dotted lines indicate the 95% line at
the current frame. Fig. 7 (b-d) show the comparison of the
space-time transision of the cell density under three different
conditions. At the second row (condition A), the cell density
in the wound area is low at frame 1. Then, cells in the left and
right regions migrate into the central area and the density in
the wound area increases until it becomes flat in frame 200.
We observe the similar behaviors for the other conditions, but
cells on condition C (100nM) migrate more slowly than those
in condition A and B. The density in the wound area is still
low at the end of the sequence.

3.2.2. Speed of the Cell Migration

To analyze how the speed of cell migration changes over time,
we computed the average speed of the cell migration over the
whole area in each frame. The results presented in Fig. 8
show that the speed in the condition A (control) is consis-
tently higher than those in other conditions, and the speed in
the condition C (100nM) is the slowest. The migration speed
firstly increases until frame 50, and then it continuously de-



Fig. 11. Rose diagrams of cell migration directions on each local area.

Fig. 12. The number of accumulated cell mitosis events at
each frame.

crease with the time.

It is conceivable that the speed of the cell migration de-
pends on the distance from the wound area. To know whether
this is the case, the filled area (i.e., the left and right side of the
wound area) is divided into six local areas as shown in Fig. 9.
These local areas were defined based on the distance from the
wound area, from L1 to L3 at the left side and from R1 to R3
at the right side away from the wound area. The cells on the
edges of the wound area migrate toward the center, therefore,
these local areas also move toward the center with the time.
For each local area, the average speed of the cell migration
is computed as shown in Fig. 10. Understandably, the cells
in condition A (control) move faster than the others in every
local area, and the cells in condition C (100nM) are the slow-
est. The graph indicates another interesting phenomenon in
that the order of speeds are L1, L2 and L3 for the left side,
and R1, R2 and R3 for the right side; that is, the speed of cell
migration decreases with the distance from the wound edge.

Fig. 13. The number of cell mitosis events at each local area.

3.2.3. Direction of the Cell Migration

To quantitatively analyze the direction of the cell migration,
the distribution of cell migration directions on each condition
was plotted by an angular histogram (rose diagram) as shown
in Fig. 11. The first three rows show the distributions of the
direction on each local area, respectively, for conditions A,
B and C, and the bottom row shows the distributions on the
whole areas left and right. We can observe that the cells tend
to migrate toward the wound area in every local area on con-
dition A and B. The cell migrations in L1, R1 (nearest area to
the wound) are most highly directional to the direction to the
wound. Also the graphs indicate an interesting phenomenon
that cell migration in condition C (100nM) is less directed to
the wound area (0◦ for the left side, 180◦ for the right side).
This means that the speed of the cell migration toward the
wound area is the slowest in condition C (Fig. 6 (d)) not be-
cause the migration speed is slow, but because the migration
direction is less directed.



3.2.4. Number of Cell Mitosis Events

To analyze how the number of cell mitosis events changes
over time, we computed the number of accumulated mitosis
events over the whole area. The results presented in Fig. 12
show that the number of mitosis events in the condition A
(control) is higher than those in the other conditions. The
curves of the accumulated number are almost linear. It indi-
cates that the mitosis events occur consistently.

To show how the number of the cell mitosis events
changes by location, the number of the cell mitosis events
is computed over each local area as shown in Fig. 13. In this
graph, we observe no distinctive characteristics. This means
that the culture condition has more effects to the number of
mitosis events than the distance from the wound area does.

4. DISCUSSION AND CONCLUSION

We presented the application of automatic cell tracking in
phase-contrast microscopy images for wound healing assays
in vitro in order to produce detailed quantitative analysis of
the cell behaviors under three different culture conditions.

Understanding the cell behaviors is important to study-
ing the influence of the environments including the types
of medicines, the amount of the medicine, and materials in
which these cells can grow. In the past, the simple mea-
surement, such as the size of the wound area is often used,
but such simple measures cannot provide the detailed analy-
sis of cell behaviors. The spatio-temporal measurements of
cell behaviors are important for critical analysis, because the
cell culture conditions vary with time and space on the dish.
Our system can provide such spatio-temporal cell behaviors
measurements: the cell density, cell migration speed and di-
rection, and statistics of cell mitosis events. The results of the
experiments demonstrated the effectiveness of automatic cell
tracking for quantitatively analyzing cell behaviors.
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