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ABSTRACT

We present a method for robustly detecting hematopoietic
stem cells (HSCs) in phase contrast microscopy images.
HSCs appear to be easy to detect since they typically appear
as round objects. However, when HSCs are touching and
overlapping, showing the variations in shape and appearance,
standard pattern detection methods, such as Hough transform
and correlation, do not perform well. The proposed method
exploits the output pattern of a ring filter bank applied to
the input image, which consists of a series of matched filters
with multiple-radius ring-shaped templates. By modeling the
profile of each filter response as a quadratic surface, we ex-
plore the variations of peak curvatures and peak values of the
filter responses when the ring radius varies. The method is
validated on thousands of phase contrast microscopy images
with different acquisition settings, achieving 96.5% precision
and 94.4% recall.

Index Terms— Cell detection, ring filter, quadratic form,
hematopoietic stem cells

1. INTRODUCTION

Hematopoietic stem cells (HSCs) are blood-forming stem
cells that give rise to all the blood and immune cell types,
including myeloid and lymphoid lineages. They are one of
the only stem cell types that are routinely used in therapies
today. HSCs were also discovered to be able to form other
kinds of cells, such as muscle, blood vessels, bone, and liver
cells [1]. Once confirmed, it may eventually be possible to
use HSCs to regenerate a wide array of cells and tissues.

Two fundamental barriers hinder the development of new
and improved HSC-based treatments: 1) the lack of cost-
effective strategies to boost the number of HSCs in vitro in
order to meet clinical and research demands; and 2) the lack
of understanding of the condition and mechanism for con-
trolled differentiation of HSCs into various types of tissues.
To overcome these barriers, novel computational toolsets are
required to automatically and reliably quantify the numbers
and positions of HSCs in population environments, as they
divide into daughter cells. Since phase contrast microscopy

Fig. 1. HSCs imaged with phase contrast microscopy. (a)
HSC populations in a microwell array. (b) HSC population
confined in a single microwell.

is the primary imaging technique for the long-term monitor-
ing of HSCs in vitro, an accurate and robust method for the
detection of HSCs in phase contrast microscopy images is an
important prerequisite for implementing such toolsets.

Under a phase contrast microscope, HSCs typically ap-
pear as round objects surrounded by bright halos (Fig. 1).
There are two standard methods that can be applied to detect
such objects: Hough transform and correlation. Hough trans-
form based detection methods [2, 3, 4], which use image gra-
dient or edge information, have some drawbacks in our case
due to the variations of cell shape and appearance. The vari-
ations cause low peaks in an output accumulator space and
thus lead to false negatives or inaccurate detection (Fig. 2a).
Correlation based methods [5, 6, 7, 8] partly overcome those
drawbacks by using cell image templates, but still there are
problems (Fig. 2b). In particular, false positives tend to occur
on the background surrounded by cells because neighboring
bright halos contribute to high responses outside the cells. As
the number of cells increases the false positives would appear
more often.

Based on the observations, we propose a simple and ef-
fective method that utilizes the contextual information pro-
vided by multiple filter outputs. The method examines only
the changes of peak curvatures and peak values of the fil-
ter outputs to confirm true cells. Our proposed method has
been extensively validated in thousands of phase contrast mi-
croscopy images, and was shown to consistently outperform
the standard methods.
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Fig. 2. Detection using the standard methods: (a) Hough
transform. (b) correlation.

2. CELL DETECTION

Our cell detection scheme consists of three steps: 1) filter the
input image with multiple-radius ring filters; 2) locate cell
candidate locations and radii by detecting and thresholding
local maxima of the ring filter outputs, allowing a relatively
high false positive rate; and 3) eliminate false positives by
examining the output pattern of the multiple filters

2.1. Cell Candidates

We model the shape and appearance of an HSC by a ring pat-
tern as depicted in Fig. 4a. The pattern consists of a bright
ring on a dark background. The radius of the ring, denoted
rc, is defined as the radius of its outer circle. The width of
the ring, denoted w, equals the difference between the radii
of its outer and inner circles. The corresponding ring filter
template has an identical profile as the pattern. Since the ra-
dius of cells changes within some range as they proliferate,
we use multiple ring filters corresponding to the range.

When the filters are correlated with an image containing
ring patterns, the outputs have peaks (local maxima) at po-
sitions where each filter is matched to the patterns with the
same size. Cell candidate locations are obtained by detect-
ing local maxima with values exceeding a preset threshold in
the three-dimensional ring filter output space; the first two di-
mensions are spatial, and the third is the dimension of radius,
which we call the contextual dimension. The threshold is set
to be low to achieve a near-zero false negative rate, which
ensures most (if not all) cells are detected. An example of
detected cell candidates is shown in Fig. 3.

2.2. False Positive Elimination

There are two types of false positives, as can be seen in Fig.
3b. The first type is due to multiple local maxima for a single
cell that are generated by sightly different filters in size, and
the second one that appears in the background is caused by
bright halos of neighboring cells.

Fig. 3. Cell candidates. (a) Output of ring filter with radius
of 12 pixels and the corresponding candidates. (b) All candi-
dates from ring filters with radii between 9 and 15 pixels.

The first type of false positives can be eliminated by ex-
tending the idea of standard matched filtering. As illustrated
in Fig. 4, the highest peak occurs when the radius of the fil-
ter matches exactly to that of the pattern, and lower peaks are
generated when the filter mismatches slightly with the pattern.
The phenomena suggest that to detect the presence of a ring
pattern of radius rc (and not of any other radii), exactly three
ring filters are needed: one with radius rc, one with a radius
smaller than rc, and another with a radius larger than rc.

Specifically, we utilize a ring filter bank consisting of
three ring filters with radii rc − 1, rc, and rc + 1 to detect a
cell with radius rc. Using these three filters, the detection of a
ring pattern amounts to locating local maxima that are higher
than the peak values at radii rc ± 1. Since we already have
multiple filter outputs corresponding to a range of cell radii,
we only need to check the peak curvatures (local maxima)
and compare the peak values at positions of cell candidates in
the three-dimensional filter output space.

Fig. 4. Output variations of a multiple-radius ring filter bank.
(a) Input ring patterns with different radii. (b) A multiple-
radius ring filter bank. (c) The outputs of the filter bank ap-
plied to each ring pattern.
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In order to robustly extract the peak curvatures and values
at any location, we fit a quadratic surface model to the filter
output in a fitting window of M ×M pixels around the speci-
fied location. The peak position and value are then computed
from the fitted quadratic surface. Specifically, the values of
the filter output in a fitting window can be approximated by a
quadratic polynomial surface given by,

g(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2. (1)

The peak position, denoted (xp, yp), can be computed as:

xp =
a2a3 − 2a1a5

4a4a5 − a2
3

, yp =
a1a3 − 2a2a4

4a4a5 − a2
3

, (2)

which can be derived by setting the partial derivatives of
g(x, y) with respect to x and y to zero. The principle curva-
tures are given by the eigenvalues of the matrix:(
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where fi = f(xi, yi) is the value of a pixel in the fitting win-
dow, and n is the total number of pixels in the window. This
over-determined linear system can be expressed as �f = A�a,
which has a closed-form solution �a = (AT A)−1AT �f .

In the same framework, the second type of false positives
is removed by incorporating roundness into filter outputs. As
mentioned earlier, the false positives appear around cells and
thus happen more often as the number of cells increases. It
is because the ring template is not able to distinguish whether
it is matched at the inside or outside of cells. As long as the
halos of cells lie on the ring area of the template, the filter
produces similar output. In this case the only difference ap-
pears in the roundness of edges that are formed around a cell
candidate.

We first extract edges in the image areas containing cell
candidates, and then find edge segments for each cell candi-
date. Since the cells are round the edge segments expect to
have positive curvatures for a true cell. Therefore the follow-
ing curvature-based roundness can be used as a weight of fil-
ter outputs to discriminate the false positives from true cells:

R =
∑N

i=1 L(ei
pos)

2πrc
(4)

where the numerator is the sum of the length of edge segments
ei with positive curvature and it is normalized by the length
of a circle with radius rc of a cell candidate.

Fig. 5. False positive elimination from cell candidates. (a)
Duplicate removal. (b) Final detection result.

3. CELL CULTURE AND IMAGING

Bone marrow CD34+ HSCs (Stem Cell Technologies, Van-
couver, BC, Canada) were cultured in serum-free expansion
media with Stem Span Cocktail CC100 (Stem Cell Tech-
nologies, Vancouver, BC, Canada) at 37◦C, 5% CO2. The
cells were seeded in microwells at a density of 1-5 cells/well.
Time-lapse images were taken on 1-minute intervals for 5
days using a Carl Zeiss Axiovert 200M microscope with
an EC-Plan Neofluar 5× phase objective (Carl Zeiss Mi-
croimaging, Thornwood, NY), a heated stage incubator at
37◦C, 5% CO2, and 90% humidity (Pathology Devices Inc.,
Westminister, MD), and AxioVision 4.7.1 software.

4. EXPERIMENTAL RESULTS

We conducted experiments on two phase contrast microscopy
image sequences of HSCs from two different cell cultures.
The images were extracted from the original 1388 × 1040-
pixel images showing a 4 × 3 array of microwells to contain
only one microwell, as shown in Fig. 1. There are two reasons
for using the low magnification images. First, more wells in
the field of view means more chances to observe more ex-
periments per session. Second, the halo effect for the cells
appears more prominent compared to size, which makes the
cells more spherical in appearance.

We compared the performance of the proposed detection
method with the standard methods: Hough transform [2] and
correlation [5]. In our method, we utilized ring filters with
radii between 8 and 16 pixels since the radii of cells range
between 9 and 15 pixels in our experiments and two more fil-
ters are required to detect the smallest and the largest cells
with the filter bank. For all the methods the threshold was
set to 20% of the maximum value of ring filter outputs and
accumulation array in each frame, respectively. Based on the
ground truth created by manual counting, the overall perfor-
mance is presented in terms of precision TP/(TP+FP) and re-
call TP/(TP+FN), where TP, FP, and FN denote the number
of true positives, false positives, and false negatives, respec-
tively.
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Table 1. Comparison of detection performance.

METHOD HOUGH CORRELATION OUR

TRANSFORM METHOD

Precision 91.2% 85.7% 96.5%
Recall 86.5% 90.9% 94.4%

Fig. 6. Comparison of detection results. (a) Input image. (b-
d) Detection results using Hough transform, correlation, and
the proposed method, respectively.

As presented in Table 1, the proposed method that uti-
lized the output pattern of a ring filter bank achieved 96.5%
precision and 94.4% recall. Inferior detection performance
was obtained for the standard methods. In particular, we ob-
served that Hough transform is sensitive to the variations of
shape and appearance which was reflected by low recall (high
false negatives), while correlation generates high false pos-
itives due to touching and overlapping cells. Our proposed
method yielded better robustness in both precision and recall,
and led to better detection accuracy. Fig. 6 shows the com-
parison of detection results.

5. CONCLUSION

We proposed an accurate and robust method for detecting
hematopoietic stem cells in phase contrast microscopy im-
ages, which exploits the output pattern of a multiple-radius
ring filter bank. Compared to the standard detection schemes,
our approach improved detection accuracy. In addition to

HSC detection, our method is potentially useful for identi-
fying its morphological changes and mitosis based on a fitted
quadratic model. It is also generally applicable to detecting
other structures with variable scales.
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