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ABSTRACT

Cell segmentation in microscopy imagery is essential for
many bioimage applications such as cell tracking and shape
analysis. To segment cells from the background accurately,
we present a pixel classification approach that is independent
of cell type or imaging modality. We train a set of Bayesian
classifiers from clustered local training image patches. Each
Bayesian classifier is an expert to make decision in its spe-
cific domain. The decision from the mixture of experts de-
termines how likely a new pixel is a cell pixel. We demon-
strate the effectiveness of this approach on four cell types
with diverse morphologies under different microscopy imag-
ing modalities.

Index Terms— Cell segmentation, microscopy image,
Bayesian classifier, mixture of experts

1. INTRODUCTION

Noninvasive microscopy imaging techniques such as phase
contrast imagery and differential interference contrast (DIC)
imagery are suitable to monitor living biological specimens
and understand their behaviors. Automated tracking of cell
populations in vitro in microscopy enables applications such
as optimizing cell culture conditions in stem cell manufac-
turing to meet research and clinical demands [4]. When de-
veloping a computer vision-based tracking system capable of
tracking cells in a large population, cell segmentation plays
an important role for shape analysis, cell detection and cell
association in spatiotemporal context [3, 4, 11].

A simple cell segmentation approach may consist of sev-
eral steps: compute an intensity histogram of all image pixels,
select an intensity threshold based on the statistical histogram,
and classify image pixels into two classes based on their in-
tensities and the threshold (pixel class c = {C,B}, where
C and B represent cell and background classes respectively).
Because microscopy image histograms may be unimodal, a
single thresholding method such as Otsu threshold [6] gener-
ates poor results as shown in Fig.1(c). An exceptional work
is done by Li and Kanade in [5], where the object image
is reconstructed based on a DIC microscopy imaging model
and impressive segmentation results are achieved by applying
a single global threshold onto the “preconditioned” image.

Fig. 1. Cell segmentation is challenging. (a-b-c): segmenting
a microscopy image by Otsu threshold [6] yields poor results
where many background pixels are misclassified as cell pix-
els; (a-d-e): segmenting the image by a single global Bayesian
classifier also generates bad results. White in (c) and (e) rep-
resents cell pixels.

However, this image preconditioning method is computing-
intense and it is dependent on the microscopy imaging model.

Some image processing techniques are also widely used
in cell segmentation. For example, morphological process-
ing after thresholding an image is used to obtain connected
components as cell objects [3], and Laplacian-of-Gaussian
(LoG) filters are applied to detect cell blobs [8, 11]. On the
blob or object level, efficient features and machine learning
techniques are explored to detect cells in microscopy images
[7, 12]. In order to segment cells accurately after blob/cell
detection, post-processing steps such as level set approaches
are usually performed to localize the object boundaries [4, 8].

To achieve accurate cell segmentation with precise bound-
aries, we consider pixel-level cell classification and for-
malize it in the basic Bayesian framework. Given fea-
tures f(x, I) (e.g. intensity, gradient, etc) at pixel x of
image I, we classify the pixel as a cell pixel if P (c =
C|f(x, I)) > P (c = B|f(x, I)) (maximum a posterior,
MAP), where P (c|f(·)) is the posterior probability of cell
class based on the pixel features. Using Bayes’ rule, we
have P (c|f(x, I)) ∝ P (f(x, I)|c)P (c) where P (f(·)|c) is
the likelihood of seeing the feature given the corresponding
class, and P (c) is the prior probability about how likely class
c will be observed. If we learn the likelihood and prior prob-
abilities from training cell and background pixels all together
and build a global Bayesian classifier using intensity features,



Fig. 2. Cluster local histograms computed around N sample
pixels. (a) Around each sample pixel x, we calculate local
histograms within its surrounding local windows with width
w; (b) we compute a pair-wise similarity matrix among theN
local histograms (white represents higher similarity); (c) the
N local histograms are clustered into K clusters.

the classification results by MAP are not good (Fig.1(e)).
Observing that the likelihood and prior probabilities within
a local window vary largely according to different window
locations in an image, we propose a cell segmentation ap-
proach using a bag of local Bayesian classifiers. First, local
histograms are computed in training images and clustered
into several clusters. From each cluster, we build a Bayesian
classifier (expert). The final decision to classify any pixel in
a new input image is made by the mixture of experts.

The highlights of this approach include: it is independent
of imaging modality and cell type; the segmentation is done
by classifying individual pixels with local features, and pre-
cise cell boundaries can be achieved in a soft way where each
pixel is assigned a posterior probability about how likely it is
a cell or background pixel. We describe the details of how to
build a bag of local Bayesian classifiers in the next section,
and demonstrate the effectiveness of this approach in Section
3 with conclusion followed in Section 4.

2. SEGMENTATION USING A BAG OF LOCAL
BAYESIAN CLASSIFIERS

A bag of local Bayesian classifiers are combined by a
mixture-of-experts model:

P (c|f(x, I)) =
K∑

k=1

πk(x, I, ~rk)Pk(c|f(x, I)) (1)

where k indexes the K local Bayesian classifiers and πk(·)
represents the input-dependent weighting function described
in Section 2.2. The intuition behind the model is that different
local Bayesian classifiers are responsible to different types of
local image patches and they are experts to make decision in
their expertized domains. The weighting functions determine
which expert is dominant based on the input pixel to be clas-
sified. In this section, we first describe how to cluster local
histograms into K clusters, and then introduce how to build
and combine local Bayesian classifiers trained from the clus-
tered image patches.

2.1. Spectral Clustering on Local Histograms

Around any pixel in a training image, we can compute a lo-
cal histogram within its surrounding local window such as

Fig. 3. Learn and combine local Bayesian classifiers. (a)
shows a cluster of local histograms; (b) shows some local im-
age patches of the cluster, from which likelihood and prior
probabilities are learned; (c) shows the weighting function
πk(x, I, ~rk) of the learned Bayesian classifier on a new im-
age I to be classified.

(joint) histogram of intensity or (and) gradient magnitude etc.
For a microscopy image with 1392 × 1040 pixels, we can
get more than 1.4 millions of local histograms. If learning
local Bayesian classifiers from these histograms individually,
we would get many similar and redundant classifiers. It is
more effective and feasible to cluster local histograms be-
fore the learning. During clustering, a pair-wise similarity
(or distance) matrix among all histograms is needed. Since a
1.4M × 1.4M similarity matrix can not be stored or operated
in a common computer memory, we only compute N local
histograms around randomly selected N sample pixels in the
training image (e.g. N = 4000).

The similarity between any pair of histograms, S(~hi,~hj),
is computed by histogram comparison measures such as Bhat-
tacharya coefficients or Earth Mover’s Distance [10]. Fig.2(b)
shows an example N × N similarity matrix among N local
histograms. After applying spectral analysis [1] on the simi-
larity matrix, we get K clusters in the permutated similarity
matrix as shown in Fig.2(c).

2.2. Learn and Combine Local Bayesian Classifiers

Fig.3(a,b) show a local histogram cluster and its correspond-
ing image patches. We learn local Bayesian classifiers from
the clustered image patches. Within each training image
patch, we know which pixels belong to cells and which are
from the background, then we compute a cell histogram
~hCk and a background histogram ~hBk over all the pixels of
the image patch cluster k. Letting mC

k = sum(~hCk ) de-
note the number of cell pixels appearing in image patch
cluster k, mB

k = sum(~hBk ) be the number of background
pixels in the cluster, and mk = mC

k + mB
k be the total

number of pixels in the cluster, we compute cluster k’s cell
prior as Pk(c = C) = mC

k /mk and its cell likelihood as
Pk(f(x, I)|c = C) = ~hCk /m

C
k . Using Bayes’ rule, we get

the cell posterior pk(c = C|f(x, I)). Similarly, we do the
computation for background class. Repeating the process for
all clusters, we get a bag of local Bayesian classifiers (cell
and background posterior probabilities).

Each local Bayesian classifier is trained from a specific
cluster of image patches, thus it is an expert to perform clas-
sification on new pixels whose surrounding image patches are



Fig. 4. Experiment evaluation. (a) yellow circle: false alarm,
cyan square: miss detection; (b) cell posterior probability
P (c = C|f(x, I)), (c) classification results (red mask) by
a bag of local Bayesian classifiers match the manual-labeled
ground truth (green contours) quite well.

similar to the training image patch cluster. To classify pixel
x in a new input image, we need to decide which expert(s)
to be applied and what is the confidence level of each classi-
fier’s decision, i.e, πk(·) in Eq.1. First, we calculate a local
histogram ~hx around x, and then compute the similarity be-
tween ~hx and every histogram cluster, S(~hx, ~rk), where ~rk
represents the mean histogram of histogram cluster k. The
weighting function on classifier k is defined as

πk(x, I, ~rk) =
S(~hx, ~rk)∑K
i=1 S(

~hx, ~ri)
(2)

which is proportional to the similarity S(~hx, ~rk). For exam-
ple, the classifier learned from Fig.3(b) is an expert on image
patches including many cell pixels, thus in a new input image
(Fig.3(c)) the classifier has high confidence around cell pix-
els and low confidence on other regions. We’d like to point
out that the weighting function is input-dependent in the mix-
ture model, which is different from the boosting algorithm [2]
where the weights are fixed after training and they are propor-
tional to each classifier’s accuracy on its training set.

A new input pixel x decides which expert(s) to be applied
with what confidence level based on its local histogram. Fi-
nally, all experts’ decisions are fused into an ensemble poste-
rior by Eq.1, and the pixel is classified using its local feature
by MAP: argmaxc p(c|f(x, I)).

3. RESULTS

The bag of local Bayesian classifier approach is implemented
in a scale space. We compute local histograms with sev-
eral different window sizes (for example, based on the cell
sizes in our phase contrast image datasets, we choose w =
{10, 20, 30}). To save computational cost, we use integral
histogram technique [9] for histogram computation and Nys-
trom method for spectral clustering. It costs 50 seconds to
classify 1.4M pixels on a common desktop workstation, and
it can be faster by parallel computing due to the pixel-wise
classification.

Seq1 Seq2 Seq3 Seq4
Precision 0.967 0.898 0.936 0.941
Recall 0.900 0.925 0.854 1.0
F 0.930 0.911 0.893 0.970

Table 1. Quantitative evaluation on four different types of
microscopy sequences.

Fig.4(a,b) show a microscopy image to be segmented and
its corresponding cell posterior probability after ensembling
9 local Bayesian classifiers (three clusters on each of three
window scales). After the pixel-level MAP classification, we
group the connected cell pixels into cell candidate blobs and
remove small blobs probably due to non-cell pixels. The clas-
sification achieves good cell segmentation results compared
to manual-labeled ground truth, as shown in Fig.4(c).

We quantitatively evaluate the segmentation on the object
level. In the ground truth, a cell object is detected (true posi-
tive, TP) if most (e.g. 90%) of its component pixels are cor-
rectly classified, otherwise it is missed (false negative, FN).
A cell candidate blob by classification is a false positive (FP)
if most of its pixels do not match the ground truth. There-
fore, we define precision as P = |TP |/(|TP |+ |FP |), recall
as R = |TP |/(|TP | + |FN |), and F-measure as the Har-
monic mean of precision and recall. Our approach is val-
idated on four types of cells of different appearances cap-
tured by different imaging modalities and device settings: (1)
C2C12 muscle stem cells imaged by Zeiss Axiovert 135TV
microscope at 5X magnification; (2) bovine aortic endothe-
lial cells imaged by Olympus IX71 microscope at 10X; (3)
bovine vascular endothelial cells imaged at 10X; (4) Cen-
tral Nervous System (CNS) stem cells imaged by Zeiss Ax-
iovert 135TV microscope at 40X. We use intensity feature on
the first three phase contrast microscopy sequences and joint
intensity-gradient features on the fourth DIC microscopy se-
quence. Table 1 shows the complete evaluation results with
92.5% average accuracy (F-measure). Fig.5 shows some sam-
ples of the microscopy images and corresponding cell poste-
rior probabilities.

In the end, we perform parameter sensitivity analysis on
K over one microscopy sequence. As shown in Fig.6, the
segmentation result is poor with only one local Bayesian clas-
sifier. After K ≥ 2, the results are comparable to each other
(e.g. we choose K = 2˜5 in our system).

4. CONCLUSION AND DISCUSSION

We propose a bag of local Bayesian classifier approach for
cell segmentation in microscopy imagery. Local Bayesian
classifiers (experts) are learned from clustered training image
patches. Any new pixel to be classified is assigned a posterior
probability about how likely it is a cell or background pixel
based on the mixture-of-experts model. The binary segmen-
tation results are obtained by MAP classification. We evalu-
ate our approach quantitatively on four different types of mi-
croscopy images with 92.5% average accuracy.



Fig. 5. Sample results on four different microscopy sequences. Top row: input images; bottom row: cell posterior probabilities.

Fig. 6. Quantitative measures on one microscopy sequence
(Seq1) with different K’s.

Some miss detection happens around the mitosis region
as shown in Fig.4(a). The main reason is that we have less
training samples around the mitosis region compared to other
cell/background regions. In the future, we plan to apply
boosting training on these misclassified samples and build
a related local Bayesian classifier from them. Another miss
detection on the bottom of Fig.4(a) is because we remove the
small cell candidate blob, and the two false alarms in Fig.4(a)
are due to large cell peripheral parts. The future solution to
these problems will explore high-level object classification
instead of simply pruning cell candidates by their area sizes.
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