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Abstract. Differential Interference Contrast (DIC) microscopy is a non-destructive
imaging modality that has been widely used by biologists to capture microscopy
images of live biological specimens. However, as a qualitative technique, DIC mi-
croscopy records specimen’s physical properties in an indirect way by mapping
the gradient of specimen’s optical path length (OPL) into the image intensity. In
this paper, we propose to restore DIC microscopy images by quantitatively esti-
mating specimen’s OPL from a collection of DIC images captured from multiple
shear directions. We acquire the DIC images by rotating the specimen dish on the
microscope stage and design an Iterative Closest Point algorithm to register the
images. The shear directions of the image dataset are automatically estimated by
our coarse-to-fine grid search algorithm. We develop a direct solver on a regular-
ized quadratic cost function to restore DIC microscopy images. The restoration
from multiple shear directions decreases the ambiguity among different individ-
ual restorations. The restored DIC images are directly proportional to specimen’s
physical measurements, which is very amenable for microscopy image analysis
such as cell segmentation.

1 Introduction

Under a traditional brightfield microscope, living specimens such as cells are colorless
and transparent because they are predominantly phase objects that absorb and scatter
little illumination light. That is, cells do not significantly alter the amplitude of the light
waves passing through them and as a result, produces little or no contrast when viewed
under a brightfield microscope. For tissue culture cells, a cell’s optical path length (OPL,
product of its refractive index and geometric thickness) is normally different from that
of the surrounding medium (about 0.125um or a quarter wavelength of green light).
This optical path difference induces a small phase difference between the light waves
passing through cells and those traversing the surrounding medium. Since human eyes
are sensitive to amplitude differences between light waves as opposed to phase differ-
ences, Differential Interference Contrast (DIC) microscopy technique was invented in
1950s to convert these minute phase variations to intensity changes that can be easily
detected by human eyes (see textbook [12]).

The DIC microscope works by splitting a polarized illumination light wave into
two component waves that are spatially displaced (sheared) along a specific direction,
and then recombining the two waves after they travel through adjacent locations on the
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specimen plate. The recombination (interference) is sensitive to phase variations be-
tween the two component waves. An adjustable bias (bias retardation) can be added
into the phase variation. Because the phase variation between the two waves is caused
by OPL difference at two adjacent locations, this microscopy imaging technique is then
called “differential interference,” and the observed intensity in DIC images is propor-
tional to the OPL gradient along the shear direction. The relief-like images generated
by DIC microscopy have the pseudo 3D shadow-cast effects as if the specimens are
illuminated from an oblique lighting resource (e.g. Fig. 1(a,b)), but this artifact only in-
dicates the orientation of a specimen’s OPL gradient rather than the real topographical
structure.

1.1 Related Work

Since the intensity of a DIC image is not a linear mapping of specimen’s inherent prop-
erties such as refractive index, thickness or OPL, this has triggered strong research
interest in reconstructing the original physical properties of specimens from DIC im-
ages. We summarize the related work in three aspects: hardware-related techniques,
reconstruction from a single DIC image and reconstruction using multiple DIC images.

(1) Arnison et al. [1] proposed a hardware extension to the conventional differential
interference by inserting an extra quarter wave plate in the optical layout of a DIC
microscope, and restored the phase objects by varying bias setting and using geometric
phase-shift techniques. Shribak et al. [15] developed an orientation-independent DIC
microscopy by adding liquid crystal devices in the common DIC microscopes. The
setup of these new optical configurations might be complicated and inaccessible to the
common biology labs.

(2) Noticing the gradient interpretation of DIC images, line integration methods
were developed to reconstruct DIC images [8]. The line-by-line integration along shear
direction introduces new streaking artifacts in reconstructed images and it is sensitive
to gradient noise, thus Hilbert transform [2] and other ad hoc techniques such as low-
pass filtering [7] were explored to reduce the streaking artifacts to a certain degree.
General image processing algorithms such as deconvolution by Wiener filter [7, 11]
or by Landweber iterations [6] have been applied to reconstruct optical path length
from DIC images. A preconditioning approach was recently proposed in [10] where
the DIC image is reconstructed by minimizing a nonnegative mixed-norm constrained
cost function. We reimplemented these three types of approaches and applied them on a
pair of DIC images of the same specimens captured from two different shear directions.
As shown in Fig. 1(c) and (d), we can observe the streak artifacts by line integration.
Fig. 1(e) and (f) show the unsatisfactory restoration results by Wiener filtering with 1%
noise-to-signal power ratio of the additive noise. The deconvolution performance de-
pends on the prior knowledge of various hardware parameters (such as shear directions
and bias setting) and image noise models. Fig. 1(g) and (h) show the reconstruction
results by the preconditioning method. It is time-consuming to estimate the direct mea-
surement on specimens by the iterative preconditioning method.

From Fig. 1, we have a common observation that the reconstructions of the image
pair (Fig. 1(c,d), Fig. 1(e,f), and Fig. 1(g,h)) are not the same for the same specimens.
That is, when biologists analyze specimens, they will obtain different measurements
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Fig. 1. Reconstructing optical path length from DIC images. (a,b) Two DIC image of the same
specimens captured from two different shear directions (the arrow denotes the shear direction 6);
(c,d) Reconstruction by line integration enhanced by low-pass filtering; (e,f) Reconstruction by
deconvolution (Wiener filtering); (g,h) Reconstruction by preconditioning.

on the specimen’s optical path length according to different shear directions. This is
very undesirable because biologist don’t know which direction-specific reconstruction
unveils the real properties of specimens.

(3) A few approaches have been proposed to restore specimen’s properties from
multiple DIC images [1, 6,9, 13, 15]. These approaches either rotate prisms, change bias
settings or step the shear azimuth to capture multiple DIC images, and they require at
least two images captured from a pair of orthogonal shear directions. Without specially-
designed hardware, it is hard to rotate the specimen dish or prism manually by exact 90
degrees to satisfy the orthogonal requirement.

1.2 Our Proposal

We propose a novel approach to restore DIC microscopy images captured from multiple
shear directions without the strict orthogonal requirement. In Section 2, we derived a
closed-form solution for the restoration. Since the DIC images were captured by man-
ually rotating the dish on the stage of a common DIC microscope, there are Euclidean
transformation (rotation and translation) among captured DIC images. We designed an
Iterative Closest Point (ICP) algorithm to register the image dataset (Section 3). Rather
than measuring the shear directions of the DIC images manually, we propose a coarse-
to-fine grid search algorithm to find the shear directions automatically (Section 4). We
show our experiment results in Section 5 with the conclusion followed in Section 6.

2 Problem Formulation and Restoration Method

Based on the gradient interpretation of DIC images, we have the following simplified
DIC imaging model
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Fig. 2. Estimate the optical path length in DIC images. (a) The three observed gradient signals
along different shear directions; (b) The three signals after integration do not intersect in the
OPL space (i.e. there is no consensus among the restored signals); (c) We propose to restore
DIC images (i.e. estimate the optical path length) by minimize the total distance to all integrated

signals; (d) The spatial smooth constraint (gray mesh) is considered during the restoration; (e)
The restoration result using three DIC images.

g = Vof ey

where g(u,v) is an observed DIC image', Vy is the gradient operator along the shear
direction 6 and f(u,v) is the DIC image to be restored. This imaging model is also
used by some other DIC reconstruction methods such as the iterative preconditioning
method [10] and deconvolution by Landweber iteration [6]. More accurate and compli-
cated DIC imaging models can be referred to [14].

Based on Eq.1, the DIC image can be restored by applying line-by-line integration
on the observed gradient g along the shear direction

f:/g dx” @

where x? denotes a location on the lines along the shear direction. For a line on the
specimen plate with M locations, we can observe M — 1 gradient values by DIC mi-
croscopy. The line integration method reverses the differential problem by estimating
the OPL values at M locations from observed M — 1 gradient values, thus there are
more unknowns than available equations. The under-constrained equation system plus
the image acquisition noise may make the restored signal inconsistent when we per-
form line integration along different shear directions. As shown in Fig. 2(a), at a spec-
imen location, three gradient signals are extracted from three DIC images along their
shear directions. When we integrate the three gradient signals independently (Fig. 2(b)),
the three reconstructed signals do not intersect in the OPL space - they have different
restoration values on f at the same specimen location! To avoid the ambiguity and
achieve the consensus among different restorations, we propose to estimate the true f

! We drop the 2D location indices (u, v) in all the equations for concise expressions.
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in a least-square sense. In other words, the real f at that location should have the mini-
mum total distance to all integrated signal curves (Fig. 2(c)). Thus, we are looking for
an image f to minimize

K
> / (f— / gi dx")dx 3)
i—1 Y R?

where ¢ indexes the K DIC images captured from different shear directions 6; on the
same specimens, x = (u,v) is a pixel location on the 2D Euclidean space R?. The
minimization on Eq. 3 needs to carry out the line integration [ g; dx?% explicitly for
each DIC image. However, the line integration itself is not a satisfactory restoration
as we see in Fig. 1(c) and (d). Instead, we propose to restore f by minimizing a cost
function in the gradient domain directly

K
> / (Vo,f — gi)%dx. )
i=1YR?

The goal is to compute an f whose gradients along different shear directions are as close
as possible to the corresponding given gradients, g;’s. After mapping the pixel location
from 2D Euclidean space to a new surface defined by the K shear directions

{x = (u,v),x € R*} = {0 = (01,05, - ,0k),0 €O} 3)

and using the commutativity of ) and | operations, the cost function (Eq. 4) is con-
verted into

K
/ > (Vo f —gi)*de. (6)
© =1

Eq. 6 only measures the fidelity of the restoration to all the observed data. We en-
hances the data fidelity with smooth and sparse regularizations and propose the follow-
ing objective function for restoration

K

O(f) :/@ [(Z(dei *fgi)2> +ws(axf)? +w f2 | do (7)

i=1
where dy is a differential kernel along the shear direction 6, “*” is the convolution op-
eration, dg, * f is equivalent to Vy,f, a is a kernel for local smooth, w, and w, are
weighting coefficients for the smooth and sparse regularizations, respectively. dy, can
be defined by a directional first-derivative-of-Gaussian kernel [10]. The smooth con-
straint encourages nearby pixels to have the same restoration values (Fig. 2(d)). For
example, we can regularize a restored pixel value to be close to the average of its neigh-
boring pixels (i.e.a=[111; 1 —81; 11 1]/8 for 8-connected neighborhood). The
lo sparse regularization penalizes large f values and enforces the restored background
pixels (with equal OPL at adjacent locations) to be close to zero. A stronger sparse
regularization is using [; norm but there is no closed-form solution for that. More dis-
cussions on the regularizations can be referred to the rich research work on compressive
sensing [3].
The solution that minimizes Eq. 7 must satisfy the Euler-Lagrange equation
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Fig. 3. Restoring a DIC image. (a) An input image; (b) Restoration by inverse filtering; (c) Our
restoration by minimizing a regularized cost function.

K
OE 0 OE
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of ; 00; 0fy, ®
where fp, is a shorthand notation of dg, * f and E is the integrand inside Eq. 7
K
E= <Z(d9i *fgi)2> + ws(axf)? + w2 ©)
i=1
Substituting E into Eq. 8 for the differentiating, we have
K
2wk axf+2w,f—2) dg *(dg, *f—gi) =0. (10)
i=1

Now, applying Fourier transform, F, on both sides of this equation, we obtain

K K
2w,A% F+2w,F—2) Dj -F+2> Dy, -G; =0 (1)
i=1 i=1
where A = F{a}, F = F{f}, Dy, = F{dy,}, G; = F{g;}, “-” denotes the element-
wise production and Dj = Dy, - Dy,. Solving Eq. 11 for F, we have

K K
F=—() Dy, -Gi)/(wsA” +w.— > Dj). (12)
i=1

=1

where “./” denotes the element-wise division. f is then restored by f = F~1{F}.
Fig. 2(e) shows a restored result using three images with different shear directions.
For a single DIC image with shear direction 6, the direct solution is

F=-(Dy-G)./(wsA? + w, — DJ). (13)

If without regularizations (ws = w, = 0), Eq. 13 is degraded into an inverse filtering
F - G./Dy. (14)
However, the simple inverse filtering can not restore a correct DIC image (Fig. 3(b)),
which justifies the needs of regularization. As a comparison, our restoration by Eq. 13

with wg = 0.1 and w,, = 0.001 is shown in Fig. 3(c) that is much better than the inverse
filtering. Please note that the restoration from a single shear direction (Eq. 13) contains
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ambiguity to measure the real specimen property thus we have derived solution (Eq. 12)
to restore DIC images from multiple shear directions. Eq. 13 is only used in Algorithm
2 (Section 4) for estimating the shear direction of each individual DIC image.

3 Register a Collection of DIC Images

When capturing a collection of DIC images with different shear directions by rotating
and translating dishes, we must register those images such that the same pixel loca-
tion in the image dataset represents the same specimen sample in the world. Note: this
registration step can be waived if there is a DIC microscope with rotatable prisms at
hand. We revised the Iterative Closest Point (ICP) idea [4] to register two DIC images.
Harris corner detector [5] and local non-max suppression are used to locate corners as
feature points for matching in the ICP algorithm. The corners are tolerant to appearance
changes in DIC images from different shear directions. However, the ICP algorithm can
converge to the optimum only when the initialization (rotation R and translation T)
is close to the optimum. To find the correct R and T to register images, we uniformly
sample the entire search space of all possible initializations (e.g. every 30 degrees of
rotation and every 100 pixels of translation) and run the ICP algorithm from these ini-
tializations to find the global optimal R and T. The new designed ICP algorithm is
summarized below. Fig. 4 shows an registration example using this ICP algorithm.

Fig. 4. Register two DIC images by Iterated Closest Point algorithm. (a,b) Image 1 and its corner
points (red squares); (c,d) Image 2 and its corner points (black circles); (e) The two groups of
corner points are matched with the least total distance cost; (f) The registered image 2 regarding
to image 1 based on the Euclidean transformation computed from matched corner points.
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@

Fig. 5. Register a collection of images and extract the sub-images within the overlapped regions
for our analysis. (a): Nine images are registered regarding to the first image. (b) The ten sub-
images within the overlapped square regions.

For a collection of DIC images, we randomly pick a reference image and register
all the others regarding to it. The registered images overlap in a polygon area and we
crop the largest square sub-images from the overlapped region for our analysis (Fig. 5).

Algorithm I: ICP Algorithm to Register Two DIC Images

Extract two groups of corner points {Q;} and {P;} from image 1 and image 2, re-
spectively. Compute the centroids: P = ﬁ > Piand Q = ﬁ >-; Qj. Update
Pi(*Pifp,Qj(*ija.

Initialize R = Ry, T = Ty, and ¢ = 0.

Repeat the following steps until there is no change on c.

1. Bi-directional Matching: VP;, find the closest Q; in the Euclidean space. For
Qj;, find the closest Py,. If i = k, the two corner points are matched, and update c+ =
Pi — Q.

2. Transformation: For all matched corner points, compute W = <ij> PiQ]T.
Take the singular value decomposition (SVD) of matrix W, W = UXV”. Compute
the rotation matrix as R = VU7, and the translation vector as T = Q — RP.VP,,
update P; < RP; + T.

Use the final matched points to compute R* and T, rotate and translate image 2 re-
garding to image 1 accordingly.

4 Estimate the Shear Directions

After registration, the shear direction difference between the first image and the other
K — 1 registered images are actually the rotation angle 6% (i = 1...K and 6} = 0). In
other words, if the shear direction of the first image is 6, the shear directions of the rest
images are 0, — 6°. Since §%’s are already known from the registration step, we only
need to estimate a single unknown variable ;. As shown in Fig. 6(g), when correct
shear directions are estimated for a pair of DIC images, the difference between the two
restorations reaches the minimum. We use this fact to estimate the shear direction over
the collection of registered images by a fast coarse-to-fine grid search algorithm.

Algorithm II: Coarse-to-Fine Grid Search for Shear Direction 6,
Initialize [b = 0, ub = 360 and 0y = 30.
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while dg > 1
for 0, = 1b;0, < ub; 05 = 05 + g
fort =11 < K;1+ +
Solve f; with @ = 6, — 0! through Eq. 13;
costlfs) =37 iz p Ifi — £

1,7=1...
0% < argmin cost[f]; 0g < dg/4; b + 0% — 2695 ub < 0% + 25p;
Return 07
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Fig. 6. Estimate the shear direction. (a,b) Image 1 and 2; (c,d) The restorations corresponding to
the correct shear directions; (e,f): The restorations corresponding to wrong shear directions; (g)
The difference between two restored images is a function of the shear direction.

S Experiment Results

We captured DIC images from different shear directions by manually rotating the spec-
imen dish on the stage. The collected images are registered automatically by our ICP
algorithm and the shear directions of each image is estimated by our coarse-to-fine grid
search algorithm.

First, we qualitatively evaluate our restoration results. Fig. 7(a) shows an image
(700*700 pixels) on two cells with high magnification. When we apply the direct solver
on the captured images individually, we observe different restoration results (Fig. 7(c-
h)). The ensemble restoration on the entire collection of images reveals the cells’ optical
path length much better and has less noise left on the restoration (Fig. 7(b)). Fig. 8 show
the other three collections of DIC images we acquired with low magnification and their
image restorations. Compared to the independent restorations (e.g. the last two columns
of Figure 8), the jointly restored image by an ensemble of DIC images are closer to the
physical properties of cells. There is less ambiguity to compute the optical path length
in joint restoration than the rotation-variant independent restoration.

To quantitatively evaluate the effect of our restoration results on microscopy image
analysis, we apply it onto the cell segmentation task. As we see in the third column
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Fig. 7. Reconstructing DIC images. (a) One DIC image of the image collection; (b) The recon-
structed OPL from a collection of DIC images (3D surface view); (c-i) The independent restora-
tion from individual DIC images (green arrows denote the shear directions).

of Fig. 8, since the pixel values in the restored images represent the specimen’s inher-
ent properties, there is no pseudo 3D shadow-cast effect in the images. In the restored
images, cell pixels are always positive against approximately zero background, thus im-
ages can be easily segmented by straightforward thresholding for further applications
of cell counting, tracking etc., which is not easily possible with original DIC images.
We manually label all cell boundaries in each image collection as ground truth masks.
After thresholding the restored DIC image to obtain the cell mask, we compare it with
the manually-labelled ground truth mask using the accuracy as the evaluation measure

ACC = (|TP| + [N| — [FP[)/(|P| + |NT) (15)

where cell and background pixels are denoted as positive (P) and negative (N) respec-
tively, true positive (TP) stands for those cell pixels correctly labelled by both human
annotator and computer algorithms, and false positive (FP) are those cell pixels classi-
fied by computer algorithms mistakenly. We use the same technique in [16] to learn the
best threshold for segmentation.

With K DIC images, we pick k£ (k = 1...K) of them as a collection and run our
restoration algorithm on this collection. For example, when k£ = 1 we run the restora-
tion algorithm on each single DIC image. When k = 5, we pick 5 images from the K
DIC images and run the restoration. We exhaustively tested all the possible combinato-
rial choices, and computed the mean and standard deviation on the accuracy regarding
to different image collection sizes. As we see in Fig. 9, there are more ambiguities (the
vertical red bar in Fig. 9) among different restoration results when the image collection
size k is small. As more images are added into the image collection, the restoration
accuracy increases and the ambiguity decreases. The accuracy curve levels off when
enough DIC images from different shear directions are included into the image col-
lection. Overall, we achieve the segmentation accuracy of 81% — 95% on the three
collections of DIC images. Difficulties were encountered during the restoration of pre-
dominantly flat cells that consequently had low gradient values in the observed DIC
images. Less sparsity regularization on these regions may overcome the challenge. We
leave the spatially-adaptive regularization in the future work to explore.
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Fig. 8. Restoring DIC images. Column 1: one sample image in each collection; Column 2: the
jointly reconstructed OPL (3D surface view); Column 3: The reconstructed DIC images whose
intensity values correspond to the reconstructed OPL values; Column 4 and 5: Two indepen-
dent restorations of DIC images with different shear directions, as comparisons to the ensemble
restoration.

6 Conclusions

In DIC microscopy images, the intensity values are proportional to the gradient of spec-
imen’s optical path length (OPL). To quantitatively measure specimen’s physical prop-
erties directly, we propose to restore DIC images from multiple shear directions. The
specimen dish is manually rotated to acquire a collection of DIC images with different
shear directions. An Iterative Closest Point algorithm is designed to register these im-
ages, and the shear directions of the image dataset are automatically estimated by our
coarse-to-fine grid search algorithm. We formulate the restoration problem by minimiz-
ing a regularized a cost function with a closed-form solution.
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Fig. 9. The mean (blue circle) and stand deviation (red bar) of the segmentation accuracy when
using different image collection size k. (a,b,c) are evaluation results from three image datasets
corresponding to Figure 8(a,b,c), respectively.
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Compared to the reconstruction methods based on a single DIC image which may
reconstruct different optical path lengths according to different shear directions, our



12 Zhaozheng Yin, Dai Fei Elmer Ker, and Takeo Kanade

method is orientation-invariant. Without the strict requirement of at least two orthog-
onal shear directions as needed by the previous multiple-image-based reconstruction
techniques, our approach can restore DIC images from various shear directions. As
qualitatively and quantitatively proved by our experiments, restoration from multiple
shear directions can decrease the ambiguity among different individual restorations.
The restored DIC images are directly proportional to specimen’s physical measure-
ments without the pseudo 3D effect, which is very amenable for microscopy image
analysis such as cell segmentation.
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