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Abstract— Stem cell expansion culture aims to generate
sufficient number of clinical-grade cells for cell-based therapies.
One challenge for ex vivo expansion is to decide the appropriate
time to perform subculture. Traditionally, this decision has been
reliant on human estimation of cell confluency and predicting
when confluency will approach a desired threshold. However,
the use of human operators results in highly subjective decision-
making and is prone to inter- and intra-operator variability.
Using a real-time cell image analysis system, we propose a data-
driven approach to model the cell growth process and predict
the cell confluency levels, signaling times to subculture. This
approach has great potential as a tool for adaptive real-time
control of subculturing, and it can be integrated with robotic
cell culture systems to achieve complete automation.

I. INTRODUCTION

Stem cell engineering promises to revolutionize regener-
ative medicine by helping to repair diseased or damaged
tissues and organs. Starting with the relatively small number
of primary stem cells available in isolates from the body, one
of the critical bioprocessing steps required by successful cell-
based therapies is to generate a sufficient number of clinical-
grade stem cells through ex vivo cell culture expansions [4].
However, tight control of the expansion process remains a
challenge. In particular, determining the appropriate time to
perform cell subculturing is important. Delayed subculturing
of cells can result in cell overgrowth, which leads to loss
of stem cell differentiative potential (stemness); whereas
premature subculturing can lead to longer production time
to achieve targeted cell yields, with associated added costs.
Traditionally, the decision to subculture is based on cell
confluency which is related to the cell packing densities in
the culture vessel. However, estimation of cell confluency
by human operators is a highly subjective task and prone
to inter- and intra-operator variability [5]. Furthermore, it
is not practical or cost-effective for human operators to
manually observe and monitor cell cultures 24/7. Automating
the decision on when to subculture cells will result in more
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consistent outcomes and reduce variability, leading to more
efficient and reliable stem cell culture systems.

Time-lapse microscopy imaging has been used to mon-
itor the cell growth process [3] where the degree of cell
confluency level in images is used as a metric to assess
the cell culture process. To augment human monitoring, we
propose a data-driven approach to model the cell growth
process and predict the optimal confluency for a real-time
adaptive subculture system. First, time-lapse images of cells
under the same culture condition are acquired to monitor
the cell growth process, and to compute the cell confluency
over time. These experiments are terminated without further
subculture when the computed confluency exceeds a pre-
determined cell confluency level. These pre-recorded images
with computed time series of confluency metrics serve as
training data for subsequent real-time adaptive control ex-
periments. We then build a linear subspace using princi-
ple component analysis (PCA) on the training data. When
performing a new cell culture experiment with the same
culture conditions as our training experiments, we project the
observed confluency data onto the linear subspace to model
the cell growth process and predict the future confluency.
One application of our prediction approach is to notify a
human operator in advance when to perform a subculture.
For example, 4 hours prior to exceeding a pre-determined
confluency level (e.g. 50%), the image analysis and predic-
tion system alerts a human operator via text messaging and/or
email to prepare for subculture. The goal is to help human
operators expand a population of stem cells to reach a target
number in an efficient manner without exceeding or being
far away from the pre-determined optimal confluency level
(i.e., avoiding delayed or premature subculture).

In this paper, we first introduce in Section II how we com-
pute confluency metrics to monitor cell growth processes.
Then, in Section III we present our data-driven model. The
dynamic prediction on cell confluency levels is described in
Section IV. In Section V we quantitatively compare our data-
driven approach with other parametric models and introduce
the application of our prediction system.

II. MONITORING CELL GROWTH PROCESS

During the cell culture experiment, we capture real-time
phase contrast microscopy images to monitor the degree of
confluency inside the field of view. The confluency metric is
defined as the number of pixels occupied by cells divided
by the total number of pixels in the image. For a given
phase contrast image (Fig. 1a), we restore its corresponding
artifact-free image without the halo or shade-off effects [6],
as shown in Fig. 1b. In the restored image, cell pixels
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Fig. 1. Compute confluency. (a) A phase contrast microscopy image; (b)
Restored image without halo or shade-off artifacts; (c) The segmented cell
masks by globally thresholding the restored image; (d) Segmentation results
(red) overlaid on the original image.

Fig. 2. The confluency increases during the culture process. Five sample
images overlaid with segmented cell masks (red) show the confluency level
at five time instants.

have positive values while background pixels have near-zero
values, which is amenable to image segmentation by thresh-
olding. The thresholded binary mask is shown in Fig. 1c. The
resultant cell mask overlaid on top of the original image is
shown in Fig. 1d, which proves to be a good estimation of
the confluency metric.

Given a time-lapse microscopy image sequence, we com-
pute the confluency metric for each individual image. This
produces time series data on confluency. As shown in Fig. 2,
while stem cells keep dividing (mitosis), the confluency
of the culture process increases accordingly. The small
“dips” observed in the confluency curve correspond to minor
changes in cell shapes over a period time.

III. MODELING CELL GROWTH PROCESS

Monitoring cell growth with time-lapse microscopy imag-
ing generates time series confluency data (e.g Fig. 2). Para-
metric models on the cell growth process can be obtained
by data-fitting. For example, we can fit the second-order
polynomial model on the observed confluency data by

Fig. 3. Align time series confluency curves. (a) The original confluency
metrics of N time-lapse image sequences; (b) Aligned curves such that their
cell culture processes start from the same initial confluency.

x(t) = p2t
2 + p1t+ p0 (1)

where x = [x(0), · · · ,x(t), · · · ,x(T )]T is a vector storing
the observed confluency metrics from time t = 0 to time
t = T , and p = [p1,p2,p3]

T is the parameter vector. Or,
we can fit exponential model onto the data by

x(t) = ekt + c (2)

where k and c are the scalar parameters. All the parameters
(p, k, c) are computed using the least square technique [1].

However, these parametric models that depend on specific
cell types and culture experiments might lack practical
or biological meanings. Instead, we propose a data-driven
approach that models the growth process based on observed
training data without assuming any specific model. We
ran N cell culture experiments on the same type of cells
using the same culture condition to obtain the training data.
Images of the cell culture experiments were captured every 5
minutes using a phase contrast microscopy imaging system,
which generated N time-lapse image sequences for training
purposes. We computed confluency metrics for all the N
sequences (Fig. 3a). Since the first image of each sequence
may have different degrees of confluency (i.e., the number of
seed cells may be different for the N sequences), we search
the largest initial confluency of the N curves in Fig. 3a, and
then align all the N curves such that they start from the same
initial condition (Fig. 3b).

Then, we apply PCA [2] onto the training data using
Singular Value Decomposition (SVD)

X = USVT (3)

where data matrix X = [x1, · · · ,xN ] stores the vectors of
the confluency metrics of the N image sequences, U and
V are two orthogonal matrices, and S is a diagonal matrix
with rank-ordered singular values (Fig. 4). We choose the
column vectors of V that correspond to the first K (e.g.
K = 2) largest singular values to span a linear subspace for
our data-driven modeling.

For a new cell culture experiment having the same type
of cells and the same culture condition as our training
experiments, we monitor its culture process and compute the
observed confluency, z. The culture process can be modeled
in our trained linear subspace by

y =

K∑
k=1

akvk (4)
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Fig. 4. The variance (singular value) of each principle component.

Fig. 5. Modeling cell growth by three methods: (a) Data-driven; (b)
Polynomial, and (c) Exponential. The data-driven model fits the observed
data with the least error on the culture process.

where vk denotes the kth principle vector in V, the coeffi-
cient ak is computed by

ak = vT
k z. (5)

The performance of the modeling is evaluated by the sum of
absolute difference between the modeled culture process, y,
and the observed culture process, z,

Err =
T∑

t=0

|y(t)− z(t)|. (6)

Compared to the two parametric models (polynomial and
exponential), the data-driven model fits the observed data
with the least error on the culture process in Fig. 5.

IV. PREDICTING CELL CONFLUENCY

Our goal is to accurately predict the cell confluency at a
future time t+L based on the observed confluency data from
time 0 till time t, where L is the prediction time lag. When
L = 1, we predict the confluency at the next frame. When
L = 48, we predict the confluency 4 hours later (images are
captured every 5 minutes, and the time unit is represented
by the image index.) In this section, the data-driven model
(Eq. 4) is further extended to dynamic prediction. Denote
time-dependent data matrix X(t) = [x

(t)
1 , · · · ,x(t)

N ] where
x
(t)
i = [xi(0), · · · ,xi(t)]

T (i.e., x
(t)
i is the observed time

series confluency of sequence i from time 0 till time t), we
perform SVD

X(t) = U(t)S(t)V(t)T (7)

on all the t’s (t = 0, · · · , T ). Thus, for any time index t, we
get a set of K principle components , {v(t)

1 , · · · ,v(t)
K }.

When predicting the confluency level for a new cell culture
experiment, we first compute the coefficients based on the
current observed time series data, z(t) = [z(0), · · · , z(t)]T ,

a
(t)
k = v

(t)
k

T
z(t) (8)

then the confluency at time t+ L is predicted by

z(t+L)(t+ L) =

K∑
k=1

a
(t)
k v

(t+L)
k (t+ L) (9)

Fig. 6. Predicting the confluency in the next image using three prediction
methods: (a) Data-driven; (b) Polynomial, and (c) Exponential. The data-
driven model has the least prediction error on the culture process.

Fig. 7. Predicting the confluency 4 hours later using three prediction
methods: (a) Data-driven; (b) Polynomial, and (c) Exponential. The data-
driven model is more stable compared to the parametric models and it has
the least prediction error on the culture process.

Fig. 8. The prediction error of three methods regarding to different
prediction time lags. The data-driven prediction is stable and it outperforms
the other two parametric methods consistently with the least prediction error.

Using the evaluation criterion in Eq. 6, we compare the
data-driven prediction method to the other two predictions
using parametric models. As shown in Fig. 6, when predict-
ing the confluency in the temporal domain with a small time
lag, all three prediction methods work reasonably well and
the data-driven prediction achieves the least prediction error.
When the prediction time lag (L) increases, the error of all
the prediction methods increase (Fig. 7). In particular, the
prediction by a polynomial model is quite unstable at the
beginning when there is not enough data for model fitting
(Fig. 7b). The data-driven prediction still achieves the least
prediction error for the larger prediction lag.

We further quantitatively evaluate how well the three pre-
diction methods can predict future confluency by changing
the time lag from L = 1 (5 minutes) to L = 96 (8 hours).
As shown in Fig. 8, the data-driven prediction outperforms
the other two methods consistently with the least prediction
error, and the prediction by data-driven or exponential model
is much more stable than the prediction by polynomial model
as the time lag increases.

V. EXPERIMENTS

We recorded a total of 48 image sequences under four
different cell culture conditions with sample images shown
in Fig. 9. The images were captured every 5 minutes and
each sequence consists of 1000 images at the resolution of
1392*1040 pixels. Under each culture condition, we have
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Fig. 9. Sample images from four cell culture conditions. (a) Control; (b)
With FGF2; (c) With BMP2; (d) With FGF2+BMP2.

TABLE I
THE PREDICTION ERROR OF THREE METHODS WITH L = 24.

Control FGF2 BMP2 FGF2+BMP2
Data driven 122.2 68.7 154.0 137.6
Polynomial 146.2 105.3 179.6 168.2
Exponential 148.9 97.4 309.0 211.2

TABLE II
THE PREDICTION ERROR OF THREE METHODS WITH L = 48.

Control FGF2 BMP2 FGF2+BMP2
Data driven 136.0 74.4 169.6 157.8
Polynomial 259.5 222.7 304.8 315.6
Exponential 164.7 112.6 340.9 235.3

TABLE III
THE PREDICTION ERROR OF THREE METHODS WITH L = 96.

Control FGF2 BMP2 FGF2+BMP2
Data driven 153.4 78.4 192.6 178.9
Polynomial 631.7 628.9 714.8 809.7
Exponential 188.4 136.3 400.5 278.7

12 image sequences. We use the “leave-one-out” strategy to
evaluate the prediction performance. After selecting one out
of the 12 sequences, the remaining 11 sequences undergo
PCA analysis to obtain the principle components (Eq. 7).
Then, we run the prediction (Eq. 9) on the selected sequence
and compare the prediction with the observation using Eq. 6.
We repeat the “leave-one-out” evaluation for each of the
12 sequences and use the summation of all the prediction
errors as the final evaluation criterion on the 12 sequences.
As shown in Tables 1, 2 and 3, the data-driven prediction
achieves the least error at confluency prediction over all the
four culture conditions for different prediction time lags.

The data-driven prediction on cell culture process is useful
for automating the decision process for determining when
to perform subculture. A human operator first runs several
experiments to culture the cells until they reach a pre-
determined cell confluency level for subculture. The recorded
image sequences corresponding to these experiments will be
used to build the data-driven model in Eq. 4 and compute
the time series principle components in Eq. 7. Using the
same type of cells and under the same culture condition, the

Fig. 10. Advance notification for cell culture. (a) A human operator
was notified by text message and email 4 hours prior to exceeding a pre-
determined cell confluency level; (b) Confirmation text message and email
were sent when the cell confluency level approached the pre-determined
threshold.

human operator starts the recursive cell culture/subculture
process whose goal is to culture a sufficient number of cells.
In the meantime, the human operator sets up the image
analysis and prediction system such that it can notify him/her
h (e.g. h = 4) hours prior to exceeding a pre-determined
cell confluency level, to prepare for subculture. Fig. 10
shows a successful cell culture experiment by the advance
notification.

VI. CONCLUSION

Determining the appropriate time to perform subculture is
important to optimize the process of stem cell expansion. We
monitor the process of cell growth by computing the degree
of cell confluency in phase-contrast microscopy images.
Based on the cell confluency measurements, we propose a
data-driven approach to model the cell growth process and
predict when a pre-determined cell confluency threshold will
be exceeded, requiring cells to be subcultured. Compared to
the typical parametric models for predicting cell growth, our
data-driven approach learns the cell growth model from a
training set of cell culture experiments and achieves higher
prediction accuracy on cell culture experiments that have the
same culture condition as training experiments. This data-
driven prediction has great potential as a tool for adaptive
realtime control of subculturing, and it can be integrated with
robotic cell culture systems to achieve complete automation.
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