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Automated Mitosis Detection of Stem Cell
Populations in Phase-Contrast Microscopy Images

Seungil Huh*, Dai Fei Elmer Ker, Ryoma Bise, Mei Chen, and Takeo Kanade

Abstract—Due to the enormous potential and impact that stem
cells may have on regenerative medicine, there has been a rapidly
growing interest for tools to analyze and characterize the behaviors
of these cells in vitro in an automated and high throughput fashion.
Among these behaviors, mitosis, or cell division, is important since
stem cells proliferate and renew themselves through mitosis. How-
ever, current automated systems for measuring cell proliferation
often require destructive or sacrificial methods of cell manipula-
tion such as cell lysis or in vitro staining. In this paper, we pro-
pose an effective approach for automated mitosis detection using
phase-contrast time-lapse microscopy, which is a nondestructive
imaging modality, thereby allowing continuous monitoring of cells
in culture. In our approach, we present a probabilistic model for
event detection, which can simultaneously 1) identify spatio-tem-
poral patch sequences that contain a mitotic event and 2) localize a
birth event, defined as the time and location at which cell division
is completed and two daughter cells are born. Our approach sig-
nificantly outperforms previous approaches in terms of both detec-
tion accuracy and computational efficiency, when applied to multi-
potent C3H10T1/2 mesenchymal and C2C12 myoblastic stem cell
populations.

Index Terms—Event detection modeling, mitosis detection,
phase-contrast microscopy image analysis, sequential image anal-
ysis.

I. INTRODUCTION

S TEM cell research has attracted increasing attention due
to its enormous potential in regenerative medicine for re-

placing damaged or diseased tissues or organs. Methods for as-
sessing the proliferative activity of stem cells grown in vitro are
critical tools for monitoring the health and growth rate of a cell
population. Such methods have historically relied on detecting
mitosis [1], which is the process whereby the genetic material of
a eukaryotic cell is equally distributed between its descendants
through nuclear division, resulting in the birth of daughter cells.
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Presently, many cell proliferation assays that are compatible
with automated sample handling and high-throughput screening
have been developed to measure cell proliferation [2]. However,
the majority of these procedures utilize fluorescent, luminescent
or colorimetric assays which may require destructive methods
of cell manipulation, such as cell lysis and in vitro staining, and
do not allow for continuous monitoring of cells in culture.

Since phase-contrast microscopy is a form of nondestructive
imaging, automated time-lapse systems employing this imaging
modality for monitoring and analyzing cell populations in vitro
have enormous potential for cell biology and stem cell engi-
neering [3]–[6]. Such systems not only enable high-throughput
analysis of time-lapse microscopy images, but also facilitate
continuous monitoring of live and intact cells for studying
biological phenomena and quantifying various cell responses.
Moreover, since samples are continuously monitored, sampling
at various time points is abrogated, resulting in reduced human
labor and eliminating the costs of expensive reagents required
for cell lysis or in vitro staining. Within the context of such
microscopy systems, automated detection of mitosis can pro-
vide quantitative information regarding cell proliferation on a
continuous basis. This functionality is also expected to improve
automated cell tracking systems, a comprehensive tool for the
analysis of cell behavior [5], [7], [8].

In order to achieve these benefits, automated mitosis detec-
tion systems are required to localize birth events; we define a
birth event in each mitotic event as the time and location at
which the two daughter cells first appear and the boundary be-
tween the two is clearly observed. Accurate detection of birth
events facilitate the quantification of biological metrics, such as
the mitotic index and synchrony, allowing biologists to experi-
mentally assess how altering the conditions under which cells
are cultured can impact population growth. In addition, birth
event information is helpful in determining when and where a
trajectory of a mother cell branches into two trajectories of its
daughter cells in cell tracking. Furthermore, precise localization
of birth events may aid in the discovery and characterization
of novel biological phenomenon that occur at rare frequencies
such as a single cell division event giving rise to more than two
daughter cells.

Several mitosis detection methods for phase-contrast
time-lapse microscopy images have been proposed based on
cell tracking. Yang et al. [7] obtained blob regions along
each cell’s trajectory produced by a tracking method. Each
blob region is then examined to determine if it contains a
mitotic event based on several blob properties, including area,
perimeter, circularity, and average intensity. Debeir et al. [9]
adopted a combination of several mean-shift-processes to track
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cells using an ensemble of nested kernels. One of the kernels
was designed to model cells in the mitotic state by taking into
account their morphological changes. Al-Kofahi et al. [10] pre-
sented a multiple-object matching method that can handle cell
divisions in the typical frame-by-frame segmentation tracking
method. Padfield et al. [11] investigated cell cycle phases
through tracking each nucleus over time. Mitotic events were
then identified by linking nonmitotic phases using both the
Euclidean distance metric and the fast marching method. These
approaches are intuitive but limited in that mitosis detection is
dependent on tracking performance, which is generally more
challenging to achieve than mitosis detection performance
itself. Several mitosis detection algorithms that do not involve
cell tracking have recently been proposed. Li et al. [5] applied
a fast cascade learning framework [13] adopting AdaBoost
classifiers [14] to volumetric Haar-like features extracted from
spatio-temporal patches covering the whole image region.
This approach requires a large number of training samples and
searches through the entire space due to the lack of explicit
candidate detection. Debeir et al. [12] proposed a method to
detect mitotic cell regions based on brightness change and link
the regions in consecutive frames into a cell division candidate
linkage. Each candidate was then validated based on its length
(the number of frames). This approach is efficient due to the
reduced search space by the candidate detection, but the val-
idation scheme is too simple to effectively distinguish actual
mitotic events from the other candidates.

More recently, Liu et al. [15] proposed an approach to
compensate for the drawbacks of the previous methods. After
mitosis candidate patch sequences are constructed through 3-D
seeded region growing, Hidden Conditional Random Fields
(HCRF) [16] are trained to examine each of the candidates. This
approach does not resort to tracking and adopts explicit can-
didate detection as well as model-based validation, achieving
good performance on C3H10T1/2 stem cell populations. How-
ever, this work does not detect birth events and is as such
limited in that its mitosis detection results may not be sufficient
for accurate quantitative analysis of cell proliferation or cell
tracking. In fact, the HCRF model is intrinsically not capable
of modeling birth events. In addition to inadequate modeling
power, this approach is computationally expensive due to the
preconditioning step [17], which was originally devised to
segment nonmitotic cell regions from background rather than
mitotic cell regions.

In this paper, we propose an effective mitosis detection ap-
proach that explicitly detects birth events. We developed a prob-
abilistic model that not only determines whether a mitotic event
occurs, but also provides the time at which the mitosis is com-
pleted and daughter cells are born. By additionally handling
the information of cell birth, EDCRF achieves higher discrim-
inating power than HCRF in the identification of mitosis oc-
currence. In addition, EDCRF is superior to possible alterna-
tives based on HCRF in the temporal localization of birth events
as well. We conducted experiments on multipotent C3H10T1/2
mesenchymal and C2C12 myoblastic stem cell populations, and
achieved good performance on the population with high conflu-
ency. Furthermore, we bypassed the time-consuming precondi-
tioning without sacrificing performance; as a result, computa-

tional efficiency is significantly improved compared to the pre-
vious work [15].

The remainder of this paper is organized as follows. We intro-
duce the overall process of our approach and describe the details
of the image processing part in Section II. We then formulate a
probabilistic model to determine mitosis occurrence and birth
event timing in Section III. The experimental setup and results
with discussions are presented in Sections IV and V, followed
by conclusions in Section VI.

II. APPROACH

Given a sequence of phase-contrast microscopy images, our
goal is to detect mitosis in the sequence and localize a birth event
during mitosis. To achieve this goal, we adopt the idea of can-
didate patch sequence construction from the previous work [12]
and form a process comprising three steps: candidate patch se-
quence construction, visual feature extraction, and identification
of mitosis occurrence/temporal localization of birth event. We
sketch each step to provide an overall view of our approach. The
detailed methods will be subsequently described in this and the
following sections.

• Candidate patch sequence construction: The goal of this
step is to detect all spatio-temporal patch sequences that
contain mitosis, while detecting as small a number of se-
quences not containing mitosis as possible. Through this
step, mitotic events are spatially localized and the search
space is significantly reduced from entire image sequences
to candidate patch sequences. As a result, the subsequent
steps can be more efficiently conducted, while maintaining
mitosis detection accuracy. Fig. 1 shows some examples of
candidate patch sequences our method automatically ex-
tracted.

• Visual feature extraction: Visual features are extracted
from each patch of candidate patch sequences based on
the characteristics of phase-contrast microscopy images.

• Identification of mitosis occurrence/Temporal localization
of birth event: For each candidate patch sequence, we per-
form two decision tasks regarding mitosis occurrence and
birth event. The identification of mitosis occurrence deter-
mines whether each candidate patch sequence contains a
mitosis, specifically, a birth event. For each patch sequence
determined to contain a birth event, the temporal localiza-
tion of the birth event decides which patch contains the
birth event in the patch sequence.

A. Candidate Patch Sequence Construction

For preprocessing, we compute the average image of all im-
ages in a given sequence; the average image is then subtracted
from each image. By this simple procedure, stationary bright
artifacts which may be misrecognized as mitosis cell candi-
dates are removed. In addition, intrinsic illumination variation
in phase-contrast microscopy images can be corrected.

For each image, candidate patches are first extracted based
on brightness (pixel intensity); it is known that the process of
mitosis typically exhibits a series of distinctive cell features
including increased brightness, increased circularity, and de-
creased size [5] (see Fig. 2). Each preprocessed image is con-
volved with a small-sized rectangular average filter and
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Fig. 1. Positive (top two) and negative (bottom) candidate patch sequences extracted from a multipotent C3H10T1/2 mesenchymal stem cell population. The
numbers of patches in candidate patch sequences are varied. The arrows indicate the frames containing manually annotated birth events, the location and time in
which daughter cells are born. The end of the mitotic phase involves cytokinesis, which is the pinching of the cell membrane to split a cell into two, typically shown
as a figure eight shape as in the first sequence; however, a figure eight shape is often not clearly observed as in the second sequence. The last sequence contains
apoptosis, or cell death, which exhibits similar visual characteristics to mitosis in the beginning of the process. Due to the increased brightness, apoptotic events
are mostly captured in candidate patch sequences. These sequences are extracted from frames 86 through 93 (top), 350 through 359 (center), and 819 through 831
(bottom) among the entire sequence consisting of 1436 frames.

Fig. 2. An example of candidate patch sequences located in consecutive phase-contrast microscopy images. After candidate patch extraction based on brightness,
spatially overlapped patches in consecutive frames are linked into a candidate patch sequence.

the result is thresholded with th, producing a binary image. For
each connected component in the binary image, a bounding box
is obtained and overlapping bounding boxes are then combined
into one bounding box that encloses all the overlapping boxes.
We then extract fixed-sized rectangular patches from the
image at the center position of each bounding box. The param-
eters and are closely related to the average cell size1. In our
experiments, we set parameters , th, and to be 10, 1000, and
50 using a typical cross validation scheme.

Following this, candidate patch sequences are constructed by
associating spatially overlapped patches in consecutive frames
as shown in Fig. 2. In the case that a patch in frame can be
linked with two or more patches in the following frame ,
the patch in frame is associated with the one of the patches in
frame , whereas each of the other patches in frame ini-
tiates a new candidate patch sequence. In our experiments, mul-
tiple possible associations seldom occur except right after a birth
event; a patch containing two new born cells that stick to each
other can be linked with two patches each of which contains
one of the daughter cells. In such a case, a birth event appears in
the patch sequence before multiple possible associations; thus,
association with either of the possibilities does not affect birth
event detection performance.

B. Visual Feature Extraction

Unique scale gradient histogram features are extracted from
each patch in candidate patch sequences. The unique scale gra-

1Our experiments show that the best performance is achieved when parame-
ters � and � are set to be approximately half and twice of the length of the square
enclosing the average size of mitotic cells.

dient histogram features reflect the characteristics of phase-con-
trast microscopy images.

• Relativity: The pixel values in phase contrast microscopy
images are influenced by many factors, such as artifacts
and neighboring cells. Thus, relative features which reflect
the change of pixel values, e.g., intensity gradient, are more
reliable than absolute features.

• Unique scale: The variation of cell scales is minimal since
the distances between the microscope lens and cells are al-
most uniform. Although cell sizes can differ within a cer-
tain range even during mitosis, the variation is limited and
can thus be statistically modeled by training samples.

• Rotation invariance: Cells in a given field show various
orientations. Regardless of the orientations, rotation invari-
ance generally allows similar features to be extracted from
cells with similar appearances.

The process computing unique scale gradient histograms fol-
lows scale invariance feature transform (SIFT) [19]. After di-
viding each patch into 4 4 subregions, we accumulate gra-
dient magnitudes weighted by a Gaussian function into 4 bins
along the orientations at each subregion as shown in Fig. 3. After

features are computed for each patch, L2 nor-
malization is applied to the feature vectors.

To achieve rotation invariance, each training candidate patch
sequence is duplicated by rotating all patches in the sequence
along several different orientations. This scheme results in per-
formance improvement when training samples are insufficient.
In our experiments, we applied three different orientations: 90 ,
180 , and 270 as shown in Fig. 3. Other rotation schemes are
not as effective as this simple duplication scheme because the
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Fig. 3. Schematic of unique scale gradient histogram computation. At each of 4� 4 subregions in a patch, a gradient histogram with four bins along the orientations
are computed. To achieve rotation invariance, each candidate patch sequence in the training set is duplicated by rotating all patches in the sequence along three
different orientations: 90 , 180 , and 270 .

Fig. 4. Graphical representations of two previous models (HCRF and LDCRF) and our EDCRF model. � and � represent the �th observation (the �th patch
in a given candidate sequence in our work) and the hidden state assigned on � , respectively. � represents a class label; one class label is assigned on the entire
sequence in HCRF, while a class label is assigned for each of observations in LDCRF. In EDCRF, � is the label indicating the timing of the birth event and � is
the �th sub-label determined by �. Gray circles denote observed variables for training. For testing, � and � are not observed.

major axis is not reliably found in phase-contrast microscopy
images [19] or the relative spatial information is generally lost
[20].

III. MITOSIS DECISION USING EVENT DETECTION

CONDITIONAL RANDOM FIELD

After candidate patch sequence construction and visual
feature extraction, the problem reduces to determining whether
each candidate contains a birth event and which frame the birth
event is located in. For these two decision tasks, we present
event detection conditional random field (EDCRF), a proba-
bilistic model for birth event detection and localization. After
introducing related probabilistic models, we formulate the
EDCRF model and describe its learning and inference process.

A. Related Models

We review two previous probabilistic models: hidden condi-
tional random fields (HCRFs) [16] and latent-dynamic condi-
tional random fields (LDCRFs) [18]. The graphical representa-
tions of these two models are shown in Fig. 4.

HCRF was devised to analyze temporal sequences, such as vi-
sion and speech applications [21], [22]. Particularly, it has been
applied to gesture recognition tasks and demonstrates its superi-
ority to hidden Markov models (HMM) and conditional random
fields (CRF) [23]. HCRF also excels in mitosis occurrence de-
tection [15]. However, since HCRF handles sequences on each
of which only one label is imposed, it cannot capture the timing
of particular events, such as birth events, in candidate patch se-
quences.

LDCRF was proposed to additionally capture extrinsic class
dynamics based on the idea of HCRF [18]. Hidden variables in
LDCRF not only model substructure of a class sequence, but
also learn dynamics between class labels; thus, the model can

be directly applied to unsegmented sequences. Efficient training
and inference schemes can be achieved by constraining each
class label to have a disjoint set of associated hidden states.
LDCRF has the potential to be modified into a model for event
detection in that an event can be expressed as a class dynamic
change when different labels are assigned on observations be-
fore and after the event.

B. EDCRF Formulation

EDCRF has one more variable containing event timing on
the top of LDCRF as shown in Fig. 4. Given the event timing
information, the sub-label variables in the subsequent layer are
set to show an explicit label transition between before and after
the event, which implies dynamic changes of observations. The
formulation of EDCRF is as follows.

Suppose that candidate patch sequence and label pairs
are given. Each label is

defined as

(1)
Each sequence consists of can-
didate patches where denotes the th patch ( can be
varied for different sequences). We assume hidden variables

and sub-labels
where and correspond to . When a sequence label is
given, the sub-labels , and are defined as

(2)

where label , and represent no event, before the event, and
after the event (including the event), respectively. In other words,
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if there exists a birth event in a given candidate sequence, the
sub-labels before the event are set to be and the other sub-labels
set to be . Otherwise, all the sub-labels are set to be .

Under these definitions, we define a latent conditional model
for each sequence

(3)

where is a set of parameters of the model.
In order to make the modeling efficient, we adopt the same

scheme as LDCRF [18], which restricts that each sub-class label
is associated only with hidden states in a disjoint set . Then

(4)

The proposed model is thus simplified as

(5)

We define using the typical conditional random
field (CRF) formulation

(6)

where is a partition function. and
are a state and a transition function,

respectively. and are the parameters of state and
transition functions, respectively. Also, .

We define state functions as

(7)

where is a visual feature vector of . The inner product
of can be interpreted as a compatibility mea-
sure between observation and hidden state [16]. We de-
fine transition functions as

(8)

where .
We restrict sub-level transitions among ,
and , which respectively represent no event, before the
event, during the event, and after the event. Aside from these
four transitions, there exists no other transition in our setting.

C. Learning Model Parameters

For learning parameters, we maximize the following regular-
ized log-likelihood function as conventionally [24], [25]

(9)

where is the variance of a Gaussian prior.

This optimization problem can be solved by gradient ascent
methods. The derivative of with respect to , which
is the th element of , is computed as

(10)

where is the th element of .
can be computed by belief propagation

[26] in [18].
Similarly, the derivative of with respect to

is computed as

(11)

For valid transition , since ,
the derivative can be simplified as

(12)

can also be efficiently com-
puted by belief propagation.

D. Inferences

For testing of a new sequence , we first compute the prob-
abilities of our conditional model with all possible and the
optimal parameter obtained in the training step

can be computed as

(13)



HUH et al.: AUTOMATED MITOSIS DETECTION OF STEM CELL POPULATIONS IN PHASE-CONTRAST MICROSCOPY IMAGES 591

TABLE 1
COMPARISON OF MITOSIS DETECTION PERFORMANCE BETWEEN EDCRF AND HCRF MODELS WHEN THE TIMING OF BIRTH EVENTS IS NOT

CONSIDERED. COMPARISON IS CONDUCTED IN TERMS OF PRECISION, RECALL, F-MEASURE, AND THE AUC OF THE PR-CURVE ON FOUR

C3H10T1/2 AND ONE C2C12 STEM CELL POPULATIONS. EDCRF OUTPERFORMS HCRF IN TERMS OF ALL THE METRICS

because leads to under our restricted
transition rule. Similarly

(14)

The other conditional probabilities can be computed as

(15)

For mitosis occurrence decision on each candidate sequence,
we compare and . If
the former is greater, EDCRF determines that there is no
mitotic event in the given sequence. Otherwise, the tem-
poral localization of the birth event follows by comparing

, and . More formally,

(16)

IV. EXPERIMENTAL SETUP

A. Data and Ground Truth

Multipotent C3H10T1/2 mesenchymal stem cells (ATTC,
Manassas, VA) serve as a model for the adult human mes-
enchymal stem cell and were grown in Dulbecco’s Modified
Eagle’s Media (DMEM; Invitrogen, Carlsbad, CA), 10%
fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% peni-
cillin-streptomycin (PS; Invitrogen, Carlsbad, CA). C2C12
myoblastic stem cells (ATTC, Manassas, VA) have the capacity
to differentiate into osteoblasts and myocytes and were grown
in DMEM, 10% bovine serum (Invitrogen, Carlsbad, CA) and
1% PS. All cells were kept at 37 C, 5% CO in a humidified
incubator.

Phase-contrast microscopy images of the two types of stem
cell populations (C3H10T1/2 and C2C12) were generated
as follows. During the growth of stem cells, microscopy cell
images were acquired every 5 min using a Zeiss Axiovert

T135V microscope (Carl Zeiss Microimaging, Thornwood,
NY) equipped with a 5X, 0.15 N.A. phase-contrast objective,
a custom-stage incubator, and the InVitro software (Media
Cybernetics Inc., Bethesda, MD). Each of the images con-
tains 1392 1040 pixels with a resolution of 1.3 m/pixel.
C3H10T1/2 and C2C12 microscopy image sequences consist
of 1436 and 1013 images, respectively.

After acquiring the image sequences, manual annotation of
birth events was performed on one C2C12 and five C3H10T1/2
image sequences. For each birth event, the center of the
boundary between two daughter cells was marked when the
boundary is clearly observed. Since C2C12 myoblasts were
cultured to a much higher level of confluence than C3H10T1/2
mesenchymal stem cells in our data, each of the C3H10T1/2
sequences contain 41–128 mitotic events, while the C2C12
sequence contains 673 mitotic events.

B. Experiments

For mitosis detection without considering the timing of birth
events, we compare EDCRF with HCRF [16], which was pre-
viously used for mitosis occurrence detection. HCRF is known
to outperform hidden Markov models (HMM) and conditional
random fields (CRF) [15], [23].

To the best of our knowledge, there exists no probabilistic
model which has been used for automated temporal localization
of birth events given candidate patch sequences; in this respect,
our EDCRF model is original. In order to compare EDCRF
with possible alternatives, we additionally use either support
vector machines (SVM) or conditional random fields (CRF) for
the temporal localization of the birth event after the identifica-
tion of mitosis occurrence using HCRF. In these alternative ap-
proaches, the identification of mitosis occurrence and the tem-
poral localization of birth event are sequentially performed.

In the model incorporating HCRF and SVM
, a version of SVM that outputs probabilities is applied

to the sequences determined by HCRF to have a mitosis oc-
currence. More specifically, for training, candidate patches
containing manual annotation of birth events are used as posi-
tive samples and all patches in the candidate patch sequences
that do not contain mitosis as negative samples. For testing, the
SVM produces the probabilities that each patch contains a birth
event; the patch with the highest probability in the sequence is
then decided to contain a birth event.

In the model combining HCRF and CRF ,
the same labeling scheme as EDCRF is applied to temporally
localize birth events. More specifically, for training, one label is
assigned to the label variables before the birth event and another
label is assigned after the event. If there exists no birth event,
a third label is assigned to all the label variables. For testing,
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Fig. 5. The PR-curves of mitosis detection on the first C3H10T1/2 and the C2C12 image sequences when the timing of birth events is not considered. In terms of
AUC, the EDCRF model outperforms the HCRF model in both cell types.

Fig. 6. The PR-curves of EDCRF and two alternative models (�������� and��������) showing mitosis detection accuracy on the first C3H10T1/2
(top) and the C2C12 (bottom) image sequences. Detection results are considered true positive when the timing error of the birth event is not greater than a given
threshold (one of 1, 3, 5, and 10). In terms of AUC, our approach consistently outperforms the alternative approaches regardless of the threshold. The superiority
of our approach is more evident when the threshold is small, i.e., the evaluation on birth event timing is strict.

the same inference scheme as the EDCRF model is utilized to
determine a birth event’s temporal location.

For C3H10T1/2 image data, one sequence is used for training
and the other four sequences for testing whereas for C2C12
image data, half of all mitotic cells are used for training in turn,
and the other half are used for testing.

C. Evaluation

After constructing candidate patch sequences, the number of
undetected mitosis is counted. Each mitotic event, specifically
the birth event, is expected to be captured by one of the candidate
patch sequences. However, if there are birth events which are
not contained in any candidate patch sequence, such cases are
considered undetected. If one candidate patch sequence contains
more than one birth event, all of the birth events except the first
one are considered undetected as well. All of the undetected
mitosis are counted as false negatives when precision and recall
are computed.

After applying the probabilistic models, we first evaluated the
identification of mitosis occurrence in terms of precision and re-

call without examining the timing of birth events. In this case,
true positive is defined as the case that a candidate patch se-
quence containing a birth event is correctly identified no matter
how great the timing error of the birth event is. If one birth event
is located in more than one candidate patches, the birth event is
considered to exclusively belong to the patch whose center is
the closest to the birth event among the candidate patches.

We then evaluate the identification of mitosis occurrence with
the constraint of birth event timing. In this case, among the
aforementioned true positive cases, only the cases in which the
timing error of the birth event is equal to or less than a certain
threshold are considered true positive. In other words, although
a candidate sequence including an actual birth event is correctly
identified, if the timing error of the birth event is greater than
the threshold, the birth event is considered undetected as well
as the detection is regarded false. More specifically, the timing
error is measured as the frame difference between the patch
containing the ground truth and the patch containing the de-
tected birth event in the sequence. We use four different thresh-
olds (1, 3, 5, and 10) and report precision and recall for each
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TABLE II
MITOSIS DETECTION PERFORMANCE COMPARISON WHEN THE TIMING OF BIRTH EVENTS IS EXAMINED IN ADDITION TO MITOSIS OCCURRENCE. OUR APPROACH

IS COMPARED WITH THE ALTERNATIVE APPROACHES BASED ON HCRF (���� � ��� AND ���� ����) IN TERMS OF PRECISION, RECALL, F-MEASURE,
AND THE AUC OF THE PR-CURVE ON C3H10T1/2 AND C2C12 STEM CELL POPULATIONS. DETECTION RESULTS ARE CONSIDERED TRUE POSITIVE WHEN THE

TIMING ERROR OF THE BIRTH EVENT IS NOT GREATER THAN A GIVEN THRESHOLD (ONE OF 1, 3, 5, AND 10). WHEN A THRESHOLD IS SMALL (THE EVALUATION

IS STRICT), OUR APPROACH MORE CLEARLY OUTPERFORMS THE ALTERNATIVES

case. The smaller a threshold is, the stricter the evaluation is.
To compare the detection results, we also compute F-measure,
which is the harmonic mean of precision and recall, and the area
under the curve (AUC) of the precision-recall curve (PR-curve).
PR-curves are obtained by varying the decision probability in
(16).

V. RESULTS AND DISCUSSIONS

During candidate patch sequence extraction, one birth event
is not captured in four C3H10T1/2 sequences which are used
for testing. There is no case that one candidate patch sequence
contains more than one birth event in the C3H10T1/2 sequences.
In the case of the C2C12 sequence, one birth event is missed
and 36 birth events are detected following another birth event
in the same sequence; as a result, a total of 37 false negative
cases are reported before the decision tasks. Multiple mitosis in
a candidate patch sequence occur due to the adhesion of mitotic
cells at high confluency present in the C2C12 sequence. Under
such circumstances, it is difficult to identify attached cells as
separate entities.

As shown in Table I, the proposed mitosis detection method
achieves 0.913/0.870 and 0.950/0.893 in terms of precision/re-
call on C3H10T1/2 and C2C12 stem cell populations, respec-
tively, when only mitosis occurrence is considered. In terms of
F-measure and AUC, the accuracy on C2C12 is comparable to
that of C3H10T1/2, although the C2C12 cell population is more
challenging due to its higher level of confluence and deforma-
bility. Having more training samples for C2C12 might be the
reason.

Compared with the HCRF model, the EDCRF model is supe-
rior in mitosis occurrence detection in terms of precision, recall,
F-measure, and the AUC of the PR-curve as shown in Table I
and Fig. 5. A Student’s paired t-test on the F-measures shows

that the performance improvement is statistically significant at
the significance level 0.01 . These results indi-
cate that the information of birth event timing is actually helpful
for identifying the occurrence of mitosis. HCRF cannot utilize
such additional information due to its limited expression power.
On the other hand, EDCRF simultaneously models both mitosis
occurrence and birth event timing, resulting in higher discrimi-
nating power than HCRF in mitosis occurrence identification.

When we additionally consider the timing errors of birth
events and threshold them to obtain true positive cases, the supe-
riority of EDCRF is more obvious. Compared to the alternative
models, and , EDCRF consis-
tently outperforms them in terms of precision, recall, F-mea-
sure, and AUC regardless of the cell type and the threshold for
the timing error of birth events as shown in Table II. Student’s
paired t-tests on the F-measures show that the performance im-
provements are statistically significant at the significance level
0.01 regardless of the threshold of the timing error (EDCRF
versus , 0.0038, 0.0092, and
0.0028; EDCRF versus , 0.0013,
0.0055, and 0.0037 for the threshold , 3, 5, and 10, respec-
tively). When a smaller threshold corresponding to a stricter
evaluation of temporal localization is applied, our approach
significantly outperforms the alternative approaches as seen in
Fig. 6. In the alternative models, the identification of mitosis
occurrence and the temporal localization of birth events are
separately performed so the localization step may not be mean-
ingful if mitosis occurrence is incorrectly identified. In this
sense, the preceding mitosis occurrence decision may under-
mine the full potential of the localization step that follows. It is
worth mentioning that recalls do not reach one in the PR-curves
because some of existing mitosis are not detected regardless of
the decision probability of mitosis occurrence. The undetected
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Fig. 7. Temporal localization precision of birth events of three approaches: EDCRF (left), ���� � ��� (middle), and ���� � ��� (right) on two cell
populations: C3H10T1/2 (top) and C2C12 (bottom). The histograms show the frequency distribution of birth event timing errors when at most 10 frame error is
allowed. Timing error is measured as the frame difference between the patches containing the ground truth and the detected result of the birth event among true
positive samples. The temporal localization of EDCRF is more accurate than the alternatives.

Fig. 8. Sample images illustrating examples of mitosis detection on the C2C12 microscopy image sequence. Each of the yellow circles in frames 678 and 680
surrounds a detected birth event. The EDCRF model temporally localizes birth events when there is a distinct boundary between daughter cells.

TABLE III
AVERAGE AND STANDARD DEVIATION OF THE TIMING ERROR OF BIRTH

EVENTS IN TERMS OF (ABSOLUTE) FRAME DIFFERENCE. THE ERROR OF

EDCRF IS SMALLER THAN THE ALTERNATIVE MODELS. THE IMPROVEMENT

IN PERFORMANCE IS STATISTICALLY SIGNIFICANT

mitosis occur due to either imperfect extraction of candidate
patch sequences or inaccurate temporal localization of birth
events.

Fig. 7 shows the distribution of the frame differences between
the human and computer annotations of birth events among true
positive samples on C3H10T1/2 and C2C12 sequences when at
most 10 frame difference is allowed in temporal localization of
birth events. The averages of the (absolute) frame differences
using EDCRF are smaller than using the alternative models as
shown in Table III. EDCRF achieves statistically significant im-
provements in the temporal localization of birth events; when
applying Student’s t-tests, we obtain p-values less than 0.001
for all of the four cases: comparison with on
C3H10T1/2 on C3H10T1/2

on C2C12 , and

on C2C12 . In addition to the lesser per-
formance of HCRF in the identification of mitosis occurrence,
SVM and CRF also fall short of the capability of EDCRF in
the temporal localization of birth events. SVM is not capable
of modeling temporal dynamic and CRF does not capture the
hidden state structures in candidate patch sequences.

Using our design, the overall process of mitosis detection is
more computationally efficient compared to the previous work
[15]. By removing the time-consuming preconditioning [17],
our approach can process a test image of 1392 1040 pixels
in less than 5 s, while the previous method spends more than
5 min on the preconditioning step alone when using a com-
puter with a dual core 2-GHz processor and 2-GB memory. This
computational improvement enables real-time analysis of mi-
croscopy images periodically taken even with a short time in-
terval. The previously used preconditioning scheme [17] is not
required because cells show distinctive characteristics during
mitosis. Mitotic cells can be recognized without applying the
complex method devised for nonmitotic cells rather than mitotic
cells.

Fig. 8 demonstrates two examples of birth events in the
C2C12 myoblastic stem cell population automatically detected
by our approach. Our approach shows good performance on the
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Fig. 9. Sample images illustrating examples of mitosis detection on the C2C12 microscopy image sequence from frames 1000 through 1007. Each of the yellow
circles surrounds a detected birth event produced by our approach, whereas each of green squares encloses a ground truth birth event annotated by a human. During
these eight frames, twelve birth events are correctly detected within one frame error and one birth event is missed in frame 1002.

C2C12 stem population with higher confluency (approximately
80%–90%) as shown in Fig. 9.

VI. CONCLUSION AND FUTURE WORK

We have proposed an effective approach for mitosis detection,
specifically birth event detection and temporal localization. Mi-
tosis detection accuracy and speed are considerably improved
compared to previous work by developing a probabilistic model
for event detection and bypassing the use of time consuming

modules. Experimental results on two types of stem cell popu-
lations validate the efficacy of our approach.

The mitosis detection algorithm described here will facili-
tate the quantification of biological metrics for cell proliferation.
Such quantification will be useful in the study and characteriza-
tion of biological processes and may have applications in high
throughput screens that are reliant on cell proliferation mea-
surements including identification of potent anti-mitotic drugs
for chemotherapy as well as determination of drug sensitivity
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in normal and diseased cells. In addition, we plan to develop a
real-time cell tracking system that incorporates the functionality
of our mitosis detection approach. The system would facilitate
online monitoring and adaptive control of stem cell expansions
by helping to make online decisions about when to subculture
the stem cells as well as alerting the users of abnormalities of
cell behaviors.
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